avrboot/main.c

498 lines
14 KiB
C

/*****************************************************************************
*
* AVRPROG compatible boot-loader
* Version : 0.7 (Feb. 2005)
* Compiler : avr-gcc 3.4.1 / avr-libc 1.0.2
* size : depends on features and startup ( minmal features < 512 words)
* by : Martin Thomas, Kaiserslautern, Germany
* eversmith@heizung-thomas.de
*
* License : Copyright (c) 2005 Martin Thomas
* Free to use. You have to mention the copyright
* owners in source-code and documentation of derived
* work. No warranty.
*
* Tested with ATmega8, ATmega16, ATmega32, ATmega128
*
* - based on the Butterfly Bootloader-Code
* Copyright (C) 1996-1998 Atmel Corporation
* Author(s) : BBrandal, PKastnes, ARodland, LHM
* The orignal code has been made available by ATMEL together with the
* Butterfly application code. Since ATMEL.NO had no problem with
* the application gcc-port they hopefully will not have any concerns about
* publishing this port. A lot of things have been change but the ATMEL
* "skeleton" is still in this code. Make sure to keep the copyright notice
* in derived work to avoid trouble.
*
* - based on boot.h from the avr-libc (c) Eric Weddington
*
****************************************************************************
*
* The boot interrupt vector is included (this bootloader is completly in
* ".text" section). If you need this space for further functions you have to
* add a separate section for the bootloader-functions and add an attribute
* for this section to _all_ function prototypes of functions in the loader.
* With this the interrupt vector will be placed at .0000 and the bootloader
* code (without interrupt vector) at the adress you define in the linker
* options for the newly created section. See the avr-libc FAQ, the avr-
* libc's avr/boot.h documentation and the makefile for further details.
*
* See the makefile for information how to adopt the linker-settings to
* the selected Boot Size (_Bxxx below)
*
* With BOOT_SIMPLE this bootloader has 0x3DE bytes size and should fit
* into a 512word bootloader-section.
*
* Set AVR clock-frequency and the baudrate below, set MCU-type in
* makefile.
*
****************************************************************************/
/*
Does not work reliably so far:
- lock bits set
*/
// programmers-notepad tabsize 4
#define VERSION_HIGH '0'
#define VERSION_LOW '7'
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/boot.h>
#include <avr/pgmspace.h>
// function not found in boot.h to read lock/fuses
#include "lowlevel.h"
/* Pin "BLPNUM" on port "BLPORT" in this port has to grounded
(active low) to start the bootloader */
#define BLPORT PORTC
#define BLDDR DDRC
#define BLPIN PINC
#define BLPNUM PINC0
/*
Select startup-mode
* SIMPLE-Mode - Jump to bootloader main BL-loop if key is
pressed (Pin grounded) "during" reset or jump to the
application if the pin is not grounded (=pulled up by
internal pull-up-resistor)
* POWERSAVE-Mode - Startup is separated in two loops
which makes power-saving a little easier if no firmware
is on the chip. Needs more memory
* BOOTICE-Mode - to flash the JTAGICE upgrade.ebn file.
No startup-sequence in this mode. Jump directly to the
parser-loop on reset
XTAL in BOOTICEMODE must be 7372800 Hz to be compatible
with the org. JTAGICE-Firmware */
#define START_SIMPLE
//#define START_POWERSAVE
//#define START_BOOTICE
#ifndef START_BOOTICE
#define XTAL 3686400
// #define XTAL 8000000UL
#else
#warning "BOOTICE mode - External Crystal/Oszillator must be 7,3728 MHz"
#define XTAL 7372800
#endif
// UART handling - some definitions from P. Fleury's Library - thanks
#define BAUDRATE 19200
#include "uart.h"
/* enable/disable readout of fuse and lock-bits
(will not work for Mega169 since not supported by AVRPROG 1.37 */
#define ENABLEREADFUSELOCK
/* enable/disable write of lock-bits
WARNING: lock-bits can not be reseted by bootloader (as far as I know)
Only protection no unprotection, "chip erase" from bootloader only
clears the flash but does no real "chip erase" (this is not possible
with a bootloader as far as I know)
Keep this undefined!
*/
// #define WRITELOCKBITS
/* Select Boot Size (select one, comment out the others) */
// NO! #define _B128
// NO! #define _B256
// MAYBE: #define _B512
#define _B1024
//#define _B2048
#include "chipdef.h"
#define UART_RX_BUFFER_SIZE SPM_PAGESIZE
unsigned char gBuffer[UART_RX_BUFFER_SIZE];
#define eeprom_is_ready() bit_is_clear(EECR, EEWE)
#define my_eeprom_busy_wait() do{}while(!eeprom_is_ready())
unsigned char BufferLoad(unsigned int , unsigned char ) ;
void BlockRead(unsigned int , unsigned char ) ;
uint32_t address;
unsigned char device;
void send_boot(void)
{
sendchar('A');
sendchar('V');
sendchar('R');
sendchar('B');
sendchar('O');
sendchar('O');
sendchar('T');
}
void (*jump_to_app)(void) = 0x0000;
int main(void)
{
unsigned tempi;
char val;
#ifdef START_POWERSAVE
char OK = 1;
#endif
cli();
MCUCR = (1<<IVCE);
MCUCR = (1<<IVSEL); //move interruptvectors to the Boot sector
USART_Init(UART_BAUD_SELECT(BAUDRATE,XTAL),UARTSINGLE); // single speed
// USART_Init(UART_BAUD_SELECT(BAUDRATE/2,XTAL),UARTDOUBLE); // double speed
#if defined(START_POWERSAVE)
/*
This is an adoption of the Butterfly Bootloader startup-sequence.
It may look a little strange but separating the login-loop from
the main parser-loop gives a lot a possibilities (timeout, sleep-modes
etc.).
*/
BLDDR &= ~(1<<BLPNUM); // set as Input
BLPORT |= (1<<BLPNUM); // Enable pullup
for(;OK;)
{
if((BLPIN & (1<<BLPNUM)))
{
// jump to main app if pin is not grounded
BLPORT &= ~(1<<BLPNUM); // set to default
MCUCR = (1<<IVCE);
MCUCR = (0<<IVSEL); // move interruptvectors to the Application sector
jump_to_app(); // Jump to application sector
}
else
{
val = recchar();
if( val == 0x1B ) /* ESC */
{ // AVRPROG connection
while (val != 'S') // Wait for signon
{
val = recchar();
}
send_boot(); // Report signon
OK = 0;
}
else
sendchar('?');
}
// Power-Save code here
}
#elif defined(START_SIMPLE)
BLDDR &= ~(1<<BLPNUM); // set as Input
BLPORT |= (1<<BLPNUM); // Enable pullup
if((BLPIN & (1<<BLPNUM)))
{
// jump to main app if pin is not grounded
BLPORT &= ~(1<<BLPNUM); // set to default
MCUCR = (1<<IVCE);
MCUCR = (0<<IVSEL); //move interruptvectors to the Application sector
jump_to_app(); // Jump to application sector
}
#elif defined(START_BOOTICE)
#warning "BOOTICE mode - no startup-condition"
#else
#error "Select START_ condition for bootloader in main.c"
#endif
for(;;)
{
val=recchar();
if(val=='a') //Autoincrement?
{
sendchar('Y'); //Autoincrement is quicker
}
else if(val=='A') //write address
{
address=recchar(); //read address 8 MSB
address=(address<<8)|recchar();
address=address<<1; // !! convert from word address to byte address
sendchar('\r');
}
else if(val=='b')
{ // Buffer load support
sendchar('Y'); // Report buffer load supported
sendchar((UART_RX_BUFFER_SIZE >> 8) & 0xFF);
// Report buffer size in bytes
sendchar(UART_RX_BUFFER_SIZE & 0xFF);
}
else if(val=='B') // Start buffer load
{
tempi = recchar() << 8; // Load high byte of buffersize
tempi |= recchar(); // Load low byte of buffersize
val = recchar(); // Load memory type ('E' or 'F')
sendchar (BufferLoad(tempi,val));
// Start downloading of buffer
}
else if(val == 'g') // Block read
{
tempi = (recchar() << 8) | recchar();
val = recchar(); // Get memtype
BlockRead(tempi,val); // Perform the block read
}
else if(val=='e') //Chip erase
{
if (device == devtype)
{
// erase only main section (bootloader protection)
address = 0;
while ( APP_END > address )
{
boot_page_erase(address); // Perform page erase
boot_spm_busy_wait(); // Wait until the memory is erased.
address += SPM_PAGESIZE;
}
}
boot_rww_enable();
sendchar('\r');
}
else if(val=='E') //Exit upgrade
{
wdt_enable(WDTO_15MS); // Enable Watchdog Timer to give reset
sendchar('\r');
}
#ifdef WRITELOCKBITS
#warning "Extension 'WriteLockBits' enabled"
// TODO: does not work reliably
else if(val=='l') // write lockbits
{
if (device == devtype)
{
// write_lock_bits(recchar());
boot_lock_bits_set(recchar()); // boot.h takes care of mask
boot_spm_busy_wait();
}
sendchar('\r');
}
#endif
else if(val=='P') // Enter programming mode
{
sendchar('\r');
}
else if(val=='L') // Leave programming mode
{
sendchar('\r');
}
else if (val=='p') // return programmer type
{
sendchar('S'); // always serial programmer
}
#ifdef ENABLEREADFUSELOCK
#warning "Extension 'ReadFuseLock' enabled"
else if(val=='F') // read "low" fuse bits
{
sendchar( read_fuse_lock(0x0000, _BV(BLBSET)|_BV(SPMEN)) );
}
else if(val=='r') // read lock bits
{
sendchar( read_fuse_lock(0x0001, _BV(BLBSET)|_BV(SPMEN)) );
}
else if(val=='N') // read high fuse bits
{
sendchar( read_fuse_lock(0x0003,_BV(BLBSET)|_BV(SPMEN)) );
}
else if(val=='Q') // read extended fuse bits
{
sendchar( read_fuse_lock(0x0002,_BV(BLBSET)|_BV(SPMEN)) );
}
#endif
// end of ENABLEREADFUSELOCK section
else if(val=='t') // Return device type
{
sendchar(devtype);
sendchar(0);
}
else if ((val=='x')||(val=='y')) // clear and set LED ignored
{
recchar();
sendchar('\r');
}
else if (val=='T') // set device
{
device = recchar();
sendchar('\r');
}
else if (val=='S') // Return software identifier
{
send_boot();
}
else if (val=='V') // Return Software Version
{
sendchar(VERSION_HIGH);
sendchar(VERSION_LOW);
}
else if (val=='s') // Return Signature Byte
{
sendchar(sig_byte1);
sendchar(sig_byte2);
sendchar(sig_byte3);
}
else if(val != 0x1b) /* ESC */
{
sendchar('?');
}
} // end of "parser" for-loop
return 0;
}
unsigned char BufferLoad(unsigned int size, unsigned char mem)
{
unsigned int data, cnt;
uint32_t tempaddress;
for (cnt=0; cnt<UART_RX_BUFFER_SIZE; cnt++) {
if (cnt<size) gBuffer[cnt]=recchar();
else gBuffer[cnt]=0xFF;
}
cnt=0;
tempaddress = address; // Store address in page
my_eeprom_busy_wait();
if (device == devtype)
{
if (mem == 'F') // Flash
{
do {
data=gBuffer[cnt++];
data|=(gBuffer[cnt++]<<8);
boot_page_fill(address,data);
//call asm routine.
address=address+2; // Select next word in memory
size -= 2; // Reduce number of bytes to write by two
} while(size); // Loop until all bytes written
/* commented out since not compatible with mega8 -
secondary benefit: saves memory
tempaddress &= 0xFF80; // Ensure the address points to the first byte in the page
*/
boot_page_write(tempaddress);
boot_spm_busy_wait();
boot_rww_enable(); //Re-enable the RWW section
/* commented out since not compatible with mega8
if (address != (address & 0xFF80))
{ // Ensure that the address points to the beginning of the next page
address &= 0xFF80;
address += SPM_PAGESIZE;
}
*/
} // End FLASH
if (mem == 'E') // Start EEPROM
{
address>>=1;
do {
EEARL = address; // Setup EEPROM address
EEARH = (address >> 8);
address++; // Select next byte
EEDR=gBuffer[cnt++];
EECR |= (1<<EEMWE); // Write data into EEPROM
EECR |= (1<<EEWE);
while (EECR & (1<<EEWE)); // Wait for EEPROM write to finish
size--; // Decreas number of bytes to write
} while(size); // Loop until all bytes written
}
return '\r'; // Report programming OK
}
return 0; // Report programming failed
}
void BlockRead(unsigned int size, unsigned char mem)
{
unsigned int data;
my_eeprom_busy_wait();
if (mem == 'E') // Read EEPROM
{
// address>>=1; // not needed here - hmm, somehow inconsistant TODO
do {
EEARL = address; // Setup EEPROM address
EEARH = (address >> 8);
address++; // Select next EEPROM byte
EECR |= (1<<EERE); // Read EEPROM
sendchar(EEDR); // Transmit EEPROM data to PC
size--; // Decrease number of bytes to read
} while (size); // Repeat until all block has been read
}
else // Read Flash
{
do {
#if defined(RAMPZ)
data = pgm_read_word_far(address);
#else
data = pgm_read_word_near((uint16_t)address);
#endif
sendchar((unsigned char)data); //send LSB
sendchar((unsigned char)(data >> 8)); //send MSB
address += 2; // Select next word in memory
size -= 2; // Subtract two bytes from number of bytes to read
} while (size); // Repeat until all block has been read
}
}