ispprog/ispprog.c

599 lines
10 KiB
C

#include <avr/io.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <avr/interrupt.h>
#define F_CPU 7372800
#define BAUDRATE 115200
#define UART_CALC_BAUDRATE(baudRate) (((uint32_t)F_CPU) / (((uint32_t)baudRate)*16) -1)
// needs F_CPU
#include <util/delay.h>
#define LED_OFF 0x00
#define LED_ON 0x01
#define LED_FAST 0x02
#define LED_SLOW 0x03
struct {
uint8_t id; // device id
uint8_t pagemask; // bitmask of one flash-page
uint8_t pollcode; // value of an empty flash-cell
} devices[] = {
{ 0x20, 0x00, 0x7F }, // at90s2313 (no paging, reads 0x7F back)
{ 0x38, 0x00, 0x7F }, // at90s8515 (no paging, reads 0x7F back)
{ 0x43, 0x7F, 0xFF }, // mega128 (128 words/page)
{ 0x74, 0x3F, 0xFF }, // mega16 (64 words/page)
{ 0x00, 0x00, 0x00 },
};
uint16_t lastaddr = 0;
uint8_t lastcmd = 0, lastval = 0, pollcode = 0xFF;
uint8_t page_buf[256];
ISR(SIG_INPUT_CAPTURE1)
{
// toggle LED
PORTB ^= (1<<PORTB3);
}
/* Send one byte to PC */
void ser_send(uint8_t data)
{
loop_until_bit_is_set(UCSRA, UDRIE);
UDR = data;
}
/* Receive one byte from PC */
uint8_t ser_recv(void)
{
loop_until_bit_is_set(UCSRA, RXC);
return UDR;
}
/* Check if receiver ready */
uint8_t ser_recv_ready(void)
{
return bit_is_set(UCSRA, RXC);
}
/* Send one byte to target, and return received one */
uint8_t spi_rxtx(uint8_t val)
{
SPDR = val;
loop_until_bit_is_set(SPSR, SPIF);
return SPDR;
}
/* Set LED mode */
void led_mode(uint8_t mode)
{
static uint8_t oldmode = LED_OFF;
if (mode == oldmode) {
return;
} else if (mode == LED_ON) {
TCCR1B = 0x00;
PORTB &= ~(1<<PORTB3);
} else if (mode == LED_OFF) {
TCCR1B = 0x00;
PORTB |= (1<<PORTB3);
} else if (mode == LED_FAST) {
// 100ms reload
ICR1H = 0x2D;
ICR1L = 0x00;
// timer1 prescaler 64, CTC mode via Input Capture
TCCR1B = (1<<WGM13) | (1<<WGM12) | (1<<CS11) | (1<<CS10);
} else if (mode == LED_SLOW) {
// 250ms reload
ICR1H = 0x70;
ICR1L = 0x80;
// timer1 prescaler 64, CTC mode via Input Capture
TCCR1B = (1<<WGM13) | (1<<WGM12) | (1<<CS11) | (1<<CS10);
}
oldmode = mode;
}
/* Control reset and SPI lines */
void set_reset(uint8_t mode)
{
// set reset high, make SCK & MOSI inputs
if (mode) {
PORTB |= (1<<PORTB1);
DDRB &= ~((1<<PORTB7) | (1<<PORTB5));
// set reset low, make SCK & MOSI outputs
} else {
PORTB &= ~(1<<PORTB1);
DDRB |= ((1<<PORTB7) | (1<<PORTB5));
}
// wait 50ms
_delay_ms(25);
_delay_ms(25);
}
/*
* writes a byte to target flash/eeprom
* remeber the values for polling
*/
void mem_write(uint8_t cmd, uint16_t addr, uint8_t val)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
spi_rxtx(val);
lastcmd = cmd;
lastaddr = addr;
lastval = val;
}
/* read a byte from target flash/eeprom */
uint8_t mem_read(uint8_t cmd, uint16_t addr)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
return spi_rxtx(0x00);
}
/* wait until byte/page is written to target memory */
void poll(void)
{
uint8_t cmd, val, poll = 0xFF;
if (lastcmd == 0xC0) {
// we can not poll, wait default value
if (lastval == pollcode || lastval == 0x7F || lastval == 0x80) {
_delay_ms(10);
return;
}
cmd = 0xA0;
} else {
// we can not poll, wait default value
if (lastval == pollcode) {
_delay_ms(10);
return;
}
cmd = (lastcmd & 0x08) | 0x20;
}
/* read until we get correct value */
do {
val = mem_read(cmd, lastaddr);
} while ((val != lastval) && poll--);
}
int main(void)
{
uint16_t addr = 0;
uint8_t device = 0, pagemask = 0;
// reset & activity as outputs, pullup SlaveSelect
PORTB = (1<<PORTB1) | (1<<PORTB3) | (1<<PORTB4);
DDRB = (1<<PORTB1) | (1<<PORTB3);
// Set baud rate
UBRRH = (UART_CALC_BAUDRATE(BAUDRATE)>>8) & 0xFF;
UBRRL = (UART_CALC_BAUDRATE(BAUDRATE) & 0xFF);
// enable rx/tx, 8n1
UCSRB = (1<<TXEN) | (1<<RXEN);
UCSRC = (1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ0);
// SPI enabled, Master mode, F_OSC/4
SPCR = (1<<SPE) | (1<<MSTR);
// enable timer1 input capture interrupt (CTC hit)
TIMSK = (1<<TICIE1);
sei();
// disable reset
set_reset(1);
while (1) {
uint8_t pulse = 0;
while (!ser_recv_ready()) {
// reset the target
if (PIND & (1<<PIND3)) {
if (!pulse) {
led_mode(LED_ON);
set_reset(0);
set_reset(1);
led_mode(LED_OFF);
pulse = 1;
}
} else {
pulse = 0;
}
}
switch (ser_recv()) {
// Enter programming mode
case 'P': {
uint8_t sync, count = 0x20;
led_mode(LED_ON);
do {
set_reset(1);
set_reset(0);
spi_rxtx(0xAC);
spi_rxtx(0x53);
sync = spi_rxtx(0x00);
spi_rxtx(0x00);
} while (sync != 0x53 && count--);
ser_send('\r');
break;
}
// Autoincrement address
case 'a':
ser_send('Y');
break;
// Set address
case 'A':
addr = (ser_recv() << 8);
addr |= ser_recv();
ser_send('\r');
break;
// Write program memory, low byte
case 'c':
led_mode(LED_FAST);
mem_write(0x40, addr, ser_recv());
// poll on byte addressed targets
if (!pagemask)
poll();
ser_send('\r');
break;
// Write program memory, high byte
case 'C':
led_mode(LED_FAST);
mem_write(0x48, addr, ser_recv());
// poll on byte addressed targets
if (!pagemask)
poll();
addr++;
ser_send('\r');
break;
// Issue Page Write
case 'm':
led_mode(LED_FAST);
spi_rxtx(0x4C);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
ser_send('\r');
break;
// Read Lock Bits
case 'r':
ser_send(mem_read(0x58, 0x0000));
ser_send('\r');
break;
// Read program memory
case 'R':
led_mode(LED_SLOW);
ser_send(mem_read(0x28, addr));
ser_send(mem_read(0x20, addr));
addr++;
break;
// Read data memory
case 'd':
led_mode(LED_SLOW);
ser_send(mem_read(0xA0, addr));
addr++;
break;
// Write data memory
case 'D':
led_mode(LED_FAST);
mem_write(0xC0, addr, ser_recv());
poll();
addr++;
ser_send('\r');
break;
// Chip erase
case 'e':
spi_rxtx(0xAC);
spi_rxtx(0x80);
spi_rxtx(0x00);
spi_rxtx(0x00);
_delay_ms(25);
ser_send('\r');
break;
// Write lock bits
// TODO: not implemented
case 'l':
ser_recv();
ser_send('\r');
break;
// Read fuse bits
case 'F':
spi_rxtx(0x50);
spi_rxtx(0x00);
spi_rxtx(0x00);
ser_send(spi_rxtx(0x00));
break;
// Return High Fusebits
case 'N':
spi_rxtx(0x58);
spi_rxtx(0x08);
spi_rxtx(0x00);
ser_send(spi_rxtx(0x00));
break;
// Return extendet Fusebits
case 'Q':
spi_rxtx(0x50);
spi_rxtx(0x08);
spi_rxtx(0x00);
ser_send(spi_rxtx(0x00));
break;
// Leave programming mode
case 'L':
// Exit
case 'E':
set_reset(1);
led_mode(LED_OFF);
ser_send('\r');
break;
// Select device type
case 'T': {
uint8_t val, i = 0;
val = ser_recv();
do {
if (val == devices[i].id) {
device = val;
pagemask = devices[i].pagemask;
pollcode = devices[i].pollcode;
break;
}
} while (devices[i++].id);
ser_send('\r');
break;
}
// Read signature bytes
case 's': {
uint8_t i = 2;
do {
spi_rxtx(0x30);
spi_rxtx(0x00);
spi_rxtx(i);
ser_send(spi_rxtx(0x00));
} while (i--);
break;
}
// Return supported device codes
case 't': {
uint8_t val, i = 0;
do {
val = devices[i++].id;
ser_send(val);
} while (val);
break;
}
// Return software identifier
case 'S':
ser_send('A');
ser_send('V');
ser_send('R');
ser_send('-');
ser_send('I');
ser_send('S');
ser_send('P');
break;
// Return software version
case 'V':
ser_send('3');
ser_send('8');
break;
// Return hardware version
case 'v':
ser_send('1');
ser_send('2');
break;
// Return programmer type
case 'p':
ser_send('S');
break;
// Set LED
case 'x':
ser_recv();
led_mode(LED_ON);
break;
// Clear LED
case 'y':
ser_recv();
led_mode(LED_OFF);
break;
// Report Block write Mode
case 'b':
ser_send('Y');
ser_send(sizeof(page_buf) >> 8);
ser_send(sizeof(page_buf) & 0xFF);
break;
// Block Write
case 'B': {
uint16_t size, i;
uint8_t type;
led_mode(LED_FAST);
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
for (i = 0; i < size; i++)
page_buf[i] = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
mem_write(0x40, addr, page_buf[i]);
mem_write(0x48, addr, page_buf[i+1]);
addr++;
// page write on page-boundry
if ((addr & pagemask) == 0x00) {
spi_rxtx(0x4C);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
}
}
// last page
if (size != sizeof(page_buf)) {
spi_rxtx(0x4C);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
mem_write(0xC0, addr, page_buf[i]);
poll();
addr++;
}
}
ser_send('\r');
break;
}
// Block Read
case 'g': {
uint16_t size, i;
uint8_t type;
led_mode(LED_SLOW);
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
ser_send(mem_read(0x20, addr));
ser_send(mem_read(0x28, addr));
addr++;
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
ser_send(mem_read(0xA0, addr));
addr++;
}
}
break;
}
// Write fuse bits
// TODO: implement
case 'f':
ser_recv();
ser_send('\r');
break;
// Universial command
case ':': {
uint8_t val[3];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
ser_send(spi_rxtx(val[2]));
_delay_ms(25);
ser_send('\r');
break;
}
// New universal command
case '.': {
uint8_t val[4];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
val[3] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
spi_rxtx(val[2]);
ser_send(spi_rxtx(val[3]));
_delay_ms(25);
ser_send('\r');
break;
}
// ESC
case 0x1B:
break;
default:
ser_send('?');
break;
}
}
return 0;
}