ispprog/ispprog.c

1194 lines
38 KiB
C

/***************************************************************************
* C based avr910 / avr109 ISP Adapter *
* *
* Copyright (C) 2006 - 20011 by Olaf Rempel *
* razzor AT kopf MINUS tisch DOT de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License, *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <string.h>
#define ARRAY_SIZE(x) (sizeof(x) / sizeof(*x))
/* *********************************************************************** */
#if defined(CONFIG_ispprog)
/*
* using ATmega16 @7.3728MHz:
* Fuse H: 0xDA (512 words bootloader, jtag disabled)
* Fuse L: 0xFF (ext. Crystal)
*/
#define F_CPU 7372800
#define BAUDRATE 115200
#define TIMER_RELOAD (0xFF - 72) /* 10ms @7.3728MHz */
#define ISP_RESET PORTB1 /* to target */
#define ISP_LED PORTB3 /* low active */
#define ISP_MOSI PORTB5 /* to target */
#define ISP_MISO PORTB6 /* to target */
#define ISP_SCK PORTB7 /* to target */
#define RESET_IN PORTD3 /* high active */
#define ISP_INACTIVE() { /* ISP_SCK, ISP_MOSI and ISP_RESET are inputs */ \
DDRB &= ~((1<<ISP_SCK) | (1<<ISP_MOSI) | (1<<ISP_RESET)); \
PORTB |= (1<<ISP_RESET); \
};
#define ISP_ACTIVE() { /* ISP_SCK, ISP_MOSI and ISP_RESET are outputs, set ISP_RESET low */ \
DDRB |= ((1<<ISP_SCK) | (1<<ISP_MOSI) | (1<<ISP_RESET)); \
PORTB &= ~(1<<ISP_RESET); \
};
#define ISP_LED_ON() { PORTB &= ~(1<<ISP_LED); };
#define ISP_LED_OFF() { PORTB |= (1<<ISP_LED); };
#define ISP_CHECK() (PIND & (1<<RESET_IN))
#define GPIO_INIT() { /* ISP_RESET and ISP_LED are outputs, pullup SlaveSelect */ \
PORTB = (1<<ISP_RESET) | (1<<ISP_LED) | (1<<PORTB4); \
DDRB = (1<<ISP_RESET) | (1<<ISP_LED); \
};
/* *********************************************************************** */
#elif defined(CONFIG_ispprog2)
/*
* using ATmega328P @8MHz:
* Fuse E: 0xFA (2.7V BOD)
* Fuse H: 0xDC (512 words bootloader)
* Fuse L: 0xE2 (internal osc)
*/
#define F_CPU 8000000
#define BAUDRATE 115200
#define TIMER_RELOAD (0xFF - 78) /* 10ms @8MHz */
/* trim internal oscillator to get "good" baudrate */
#define OSCCAL_VALUE 0x80
#define ISP_RESET PORTB2 /* to target */
#define ISP_LED PORTB0 /* high active */
#define ISP_MOSI PORTB3 /* to target */
#define ISP_MISO PORTB4 /* to target */
#define ISP_SCK PORTB5 /* to target */
#define RESET_IN PORTB1 /* low active */
#define ISP_INACTIVE() { /* ISP_SCK, ISP_MOSI are inputs, set ISP_RESET high */ \
DDRB &= ~((1<<ISP_SCK) | (1<<ISP_MOSI)); \
PORTB |= (1<<ISP_RESET); \
};
#define ISP_ACTIVE() { /* ISP_SCK, ISP_MOSI and ISP_RESET are outputs, set ISP_RESET low */ \
DDRB |= ((1<<ISP_SCK) | (1<<ISP_MOSI)); \
PORTB &= ~(1<<ISP_RESET); \
};
#define ISP_LED_ON() { PORTB |= (1<<ISP_LED); };
#define ISP_LED_OFF() { PORTB &= ~(1<<ISP_LED); };
#define ISP_CHECK() !(PINB & (1<<RESET_IN))
/* DL1414 display */
#define DISP_WR PORTC2 /* low active */
#define DISP_A0 PORTC0
#define DISP_A1 PORTC1
#define DISP_D0 PORTC3
#define DISP_D1 PORTD2
#define DISP_D2 PORTD3
#define DISP_D3 PORTD4
#define DISP_D4 PORTD5
#define DISP_D5 PORTD6
#define DISP_D6 PORTD7
#define GPIO_INIT() { /* ISP_RESET and ISP_LED are outputs, pullup RESET_IN and SlaveSelect */ \
PORTB = (1<<ISP_RESET) | (1<<RESET_IN) | (1<<PORTB2); \
DDRB = (1<<ISP_RESET) | (1<<ISP_LED); \
\
/* all DISP_* pins are outputs, DISP_WR is high */ \
DDRC = (1<<DISP_WR) | (1<<DISP_A0) | (1<<DISP_A1) | (1<<DISP_D0); \
PORTC = (1<<DISP_WR); \
DDRD = 0xFC; \
};
/* *********************************************************************** */
#else
#error "unknown CONFIG"
#endif
/* *********************************************************************** */
#include <util/delay.h>
#define UART_CALC_BAUDRATE(baudRate) (((uint32_t)F_CPU) / (((uint32_t)baudRate)*16) -1)
/* F_CPU /4 (1.8432MHz) */
#define SPI_MODE4 ((1<<SPE) | (1<<MSTR))
/* F_CPU /16 (460.8kHz) */
#define SPI_MODE3 ((1<<SPE) | (1<<MSTR) | (1<<SPR0))
/* F_CPU /64 (115.2kHz) */
#define SPI_MODE2 ((1<<SPE) | (1<<MSTR) | (1<<SPR1))
/* F_CPU /128 (57.6kHz) */
#define SPI_MODE1 ((1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0))
static const uint8_t spi_modes[4] = { SPI_MODE1, SPI_MODE2, SPI_MODE3, SPI_MODE4 };
#define SPI_SPEED_PROBE 0xFF
static uint8_t spi_speed = SPI_SPEED_PROBE;
#define POLL_00 0x01 /* value 0x00 can not be polled from flash/eeprom */
#define POLL_7F 0x02 /* value 0x7F can not be polled from flash/eeprom */
#define POLL_80 0x04 /* value 0x80 can not be polled from flash/eeprom */
#define POLL_FF 0x08 /* value 0xFF can not be polled from flash/eeprom */
#define POLL_UNTESTED 0x80 /* device not tested */
struct _device {
uint8_t name[12];
uint8_t sig[3]; /* device signature */
uint8_t devcode; /* avr910 device code */
uint16_t pagemask; /* pagemask (pagesize in words!) */
uint16_t flags; /* quirks for this device */
};
static struct _device device;
static const struct _device devices[] PROGMEM = {
{ "at90s1200", { 0x1E, 0x90, 0x01 }, 0x13, 0x00, POLL_00 | POLL_FF },
{ "tiny12", { 0x1E, 0x90, 0x05 }, 0x55, 0x00, POLL_UNTESTED },
{ "tiny15", { 0x1E, 0x90, 0x06 }, 0x56, 0x00, POLL_UNTESTED },
{ "tiny13", { 0x1E, 0x90, 0x07 }, 0xFF, 0x00, POLL_UNTESTED },
{ "at90s2313", { 0x1E, 0x91, 0x01 }, 0x20, 0x00, POLL_7F | POLL_80 | POLL_FF },
{ "at90s2323", { 0x1E, 0x91, 0x02 }, 0x48, 0x00, POLL_UNTESTED },
{ "at90s2343", { 0x1E, 0x91, 0x03 }, 0x4C, 0x00, POLL_UNTESTED },
{ "at90s2333", { 0x1E, 0x91, 0x05 }, 0x34, 0x00, POLL_UNTESTED },
{ "tiny25", { 0x1E, 0x91, 0x08 }, 0x20, 0x0F, POLL_FF }, /* at90s2313 devcode */
{ "tiny26", { 0x1E, 0x91, 0x09 }, 0x5E, 0x0F, POLL_FF },
{ "tiny2313", { 0x1E, 0x91, 0x0A }, 0x5E, 0x0F, POLL_FF }, /* tiny26 devcode */
{ "tiny24", { 0x1E, 0x91, 0x0B }, 0x20, 0x0F, POLL_FF }, /* at90s2313 devcode */
{ "tiny261a", { 0x1E, 0x91, 0x0C }, 0xFF, 0x0F, POLL_FF | POLL_UNTESTED },
{ "at90s4414", { 0x1E, 0x92, 0x01 }, 0x28, 0x00, POLL_UNTESTED },
{ "at90s4434", { 0x1E, 0x92, 0x02 }, 0x6C, 0x00, POLL_UNTESTED },
{ "at90s4433", { 0x1E, 0x92, 0x03 }, 0x30, 0x00, POLL_UNTESTED },
{ "mega48", { 0x1E, 0x92, 0x05 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED},
{ "tiny45", { 0x1E, 0x92, 0x06 }, 0x20, 0x1F, POLL_FF }, /* at90s2313 devcode */
{ "tiny44", { 0x1E, 0x92, 0x07 }, 0x20, 0x1F, POLL_FF }, /* at90s2313 devcode */
{ "mega461a", { 0x1E, 0x92, 0x08 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "mega48pa", { 0x1E, 0x92, 0x0A }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "tiny4313", { 0x1E, 0x92, 0x0D }, 0x5E, 0x1F, POLL_FF | POLL_UNTESTED }, /* tiny26 devcode */
{ "at90s8515", { 0x1E, 0x93, 0x01 }, 0x38, 0x00, POLL_7F | POLL_80 | POLL_FF },
{ "at90s8535", { 0x1E, 0x93, 0x03 }, 0x68, 0x00, POLL_UNTESTED },
{ "mega83", { 0x1E, 0x93, 0x05 }, 0x65, 0x00, POLL_UNTESTED },
{ "mega8515", { 0x1E, 0x93, 0x06 }, 0x3A, 0x1F, POLL_FF | POLL_UNTESTED },
{ "mega8", { 0x1E, 0x93, 0x07 }, 0x76, 0x1F, POLL_FF },
{ "mega8535", { 0x1E, 0x93, 0x08 }, 0x69, 0x1F, POLL_FF | POLL_UNTESTED },
{ "mega88", { 0x1E, 0x93, 0x0A }, 0xFF, 0x1F, POLL_FF },
{ "tiny85", { 0x1E, 0x93, 0x0B }, 0x20, 0x1F, POLL_FF }, /* at90s2313 devcode */
{ "tiny84", { 0x1E, 0x93, 0x0C }, 0x20, 0x1F, POLL_FF }, /* at90s2313 devcode */
{ "tiny861a", { 0x1E, 0x93, 0x0D }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "mega88pa", { 0x1E, 0x93, 0x0F }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "tiny88", { 0x1E, 0x93, 0x11 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "at90pwm3", { 0x1E, 0x93, 0x81 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED }, /* same: at90pwm2 */
{ "at90usb82", { 0x1E, 0x93, 0x82 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "at90pwm3b", { 0x1E, 0x93, 0x83 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED }, /* same: at90pwm2b */
{ "mega8u2", { 0x1E, 0x93, 0x89 }, 0xFF, 0x1F, POLL_FF | POLL_UNTESTED },
{ "mega161", { 0x1E, 0x94, 0x01 }, 0x60, 0x00, POLL_UNTESTED },
{ "mega163", { 0x1E, 0x94, 0x02 }, 0x64, 0x00, POLL_UNTESTED },
{ "mega16", { 0x1E, 0x94, 0x03 }, 0x74, 0x3F, POLL_FF },
{ "mega162", { 0x1E, 0x94, 0x04 }, 0x63, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega169", { 0x1E, 0x94, 0x05 }, 0x78, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega168", { 0x1E, 0x94, 0x06 }, 0xFF, 0x3F, POLL_FF },
{ "mega164pa", { 0x1E, 0x94, 0x0A }, 0x74, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega168pa", { 0x1E, 0x94, 0x0B }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega164a", { 0x1E, 0x94, 0x0F }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "at90usb162", { 0x1E, 0x94, 0x82 }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega16u4", { 0x1E, 0x94, 0x88 }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega16u2", { 0x1E, 0x94, 0x89 }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega32", { 0x1E, 0x95, 0x02 }, 0x72, 0x3F, POLL_FF },
{ "mega329", { 0x1E, 0x95, 0x03 }, 0x75, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega3290", { 0x1E, 0x95, 0x04 }, 0x75, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega325", { 0x1E, 0x95, 0x05 }, 0x74, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega3250", { 0x1E, 0x95, 0x06 }, 0x74, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega324p", { 0x1E, 0x95, 0x08 }, 0x74, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega329p", { 0x1E, 0x95, 0x0B }, 0x75, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega3290p", { 0x1E, 0x95, 0x0C }, 0x75, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega328p", { 0x1E, 0x95, 0x0F }, 0xFF, 0x3F, POLL_FF },
{ "mega324pa", { 0x1E, 0x95, 0x11 }, 0x74, 0x3F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega324a", { 0x1E, 0x95, 0x15 }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "at90can32", { 0x1E, 0x95, 0x81 }, 0xFF, 0x3F, POLL_FF | POLL_UNTESTED },
{ "mega32u4", { 0x1E, 0x95, 0x87 }, 0xFF, 0x3F, POLL_FF },
{ "mega32u2", { 0x1E, 0x95, 0x8A }, 0xFF, 0x3F, POLL_FF },
{ "mega64", { 0x1E, 0x96, 0x02 }, 0x45, 0x7F, POLL_FF },
{ "mega649", { 0x1E, 0x96, 0x03 }, 0x75, 0x7F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega6490", { 0x1E, 0x96, 0x04 }, 0x75, 0x7F, POLL_FF | POLL_UNTESTED }, /* mega169 devcode */
{ "mega645", { 0x1E, 0x96, 0x05 }, 0x74, 0x7F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega6450", { 0x1E, 0x96, 0x06 }, 0x74, 0x7F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode */
{ "mega640", { 0x1E, 0x96, 0x08 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "mega644a", { 0x1E, 0x96, 0x09 }, 0x74, 0x7F, POLL_FF }, /* mega16 devcode */
{ "mega644p", { 0x1E, 0x96, 0x0A }, 0x74, 0x7F, POLL_FF }, /* mega16 devcode */
{ "at90can64", { 0x1E, 0x96, 0x81 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "at90usb646", { 0x1E, 0x96, 0x82 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED }, /* same: at90usb647 */
{ "mega103", { 0x1E, 0x97, 0x01 }, 0x41, 0x7F, POLL_7F | POLL_80 | POLL_FF },
{ "mega128", { 0x1E, 0x97, 0x02 }, 0x43, 0x7F, POLL_FF },
{ "mega1280", { 0x1E, 0x97, 0x03 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "mega1281", { 0x1E, 0x97, 0x04 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "mega1284p", { 0x1E, 0x97, 0x05 }, 0x74, 0x7F, POLL_FF | POLL_UNTESTED }, /* mega16 devcode) */
{ "mega1284", { 0x1E, 0x97, 0x06 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "at90can128", { 0x1E, 0x97, 0x81 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED },
{ "at90usb1286",{ 0x1E, 0x97, 0x82 }, 0xFF, 0x7F, POLL_FF | POLL_UNTESTED }, /* same: at90usb1287 */
{ "mega2560", { 0x1E, 0x98, 0x01 }, 0xFF, 0x00, POLL_UNTESTED },
{ "mega2561", { 0x1E, 0x98, 0x02 }, 0xFF, 0x00, POLL_UNTESTED },
{ "mega128rfa1",{ 0x1E, 0xA7, 0x01 }, 0xFF, 0x00, POLL_UNTESTED },
};
#define EV_NONE 0x00
#define EV_STATE_ENTER 0x01
#define EV_BUTTON_PRESSED 0x02
#define EV_BUTTON_RELEASED 0x03
#define EV_TIMEOUT 0x04
#define EV_PROG_ENTER 0x11
#define EV_PROG_LEAVE 0x12
#define STATE_IDLE 0x00 /* nothing */
#define STATE_RESET_SYNC 0x01
#define STATE_RESET_RETRY 0x02
#define STATE_RESET_PROGMODE 0x03
#define LED_OFF 0x00
#define LED_SLOW 0x20
#define LED_FAST 0x08
#define LED_ON 0x80
#define LED_SPEED1 0x20
#define LED_SPEED2 0x10
#define LED_SPEED3 0x08
#define LED_SPEED4 0x04
#define CMD_PROG_ENABLE_1 0xAC
#define CMD_PROG_ENABLE_2 0x53
#define CMD_CHIP_ERASE_1 0xAC
#define CMD_CHIP_ERASE_2 0x80
#define CMD_POLL_BUSY_1 0xF0 /* not used */
#define CMD_POLL_BUSY_2 0x00 /* not used */
#define CMD_LOAD_EADDR_1 0x4D /* not used */
#define CMD_LOAD_EADDR_2 0x00 /* not used */
#define CMD_LOAD_FLASH_HI 0x48
#define CMD_LOAD_FLASH_LO 0x40
#define CMD_LOAD_EEPROM_PAGE 0xC1 /* not used */
#define CMD_READ_FLASH_LO 0x20
#define CMD_READ_FLASH_HI 0x28
#define CMD_READ_EEPROM 0xA0
#define CMD_READ_LOCK_1 0x58
#define CMD_READ_LOCK_2 0x00
#define CMD_READ_SIG_1 0x30
#define CMD_READ_SIG_2 0x00
#define CMD_READ_FUSE_1 0x50
#define CMD_READ_FUSE_2 0x00
#define CMD_READ_FUSE_H_1 0x58
#define CMD_READ_FUSE_H_2 0x08
#define CMD_READ_FUSE_E_1 0x50
#define CMD_READ_FUSE_E_2 0x08
#define CMD_READ_CAL 0x38 /* not used */
#define CMD_WRITE_FLASH_PAGE 0x4C
#define CMD_WRITE_EEPROM 0xC0
#define CMD_WRITE_EEPROM_PAGE 0xC2 /* not used */
#define CMD_WRITE_LOCK_1 0xAC
#define CMD_WRITE_LOCK_2 0xE0
#define CMD_WRITE_FUSE_1 0xAC
#define CMD_WRITE_FUSE_2 0xA0
#define CMD_WRITE_FUSE_H_1 0xAC /* not used */
#define CMD_WRITE_FUSE_H_2 0xA8 /* not used */
#define CMD_WRITE_FUSE_E_1 0xAC /* not used */
#define CMD_WRITE_FUSE_E_2 0xA4 /* not used */
static volatile uint8_t led_mode = LED_OFF;
static uint8_t last_cmd;
static uint8_t last_val;
static uint16_t last_addr;
/* Send one byte to PC */
static void ser_send(uint8_t data)
{
#if defined(__AVR_ATmega16__)
loop_until_bit_is_set(UCSRA, UDRE);
UDR = data;
#elif defined(__AVR_ATmega328P__)
loop_until_bit_is_set(UCSR0A, UDRE0);
UDR0 = data;
#endif
} /* ser_send */
/* Receive one byte from PC */
static uint8_t ser_recv(void)
{
#if defined(__AVR_ATmega16__)
loop_until_bit_is_set(UCSRA, RXC);
return UDR;
#elif defined(__AVR_ATmega328P__)
loop_until_bit_is_set(UCSR0A, RXC0);
return UDR0;
#endif
} /* ser_recv */
#if defined(DISP_WR)
static uint8_t disp_text[24];
static uint8_t disp_length = 0;
static uint8_t disp_pos = 0;
static void disp_putc(uint8_t pos, uint8_t ch)
{
if (ch >= 'a' && ch <= 'z')
ch &= ~0x20;
PORTD = ((ch & 0x7E) << 1);
PORTC = ((ch & 0x01) << 3) | (3 - (pos & 0x03));
PORTC |= (1<<DISP_WR);
} /* disp_putc */
static void disp_put4(const uint8_t *str)
{
disp_putc(0, *str++);
disp_putc(1, *str++);
disp_putc(2, *str++);
disp_putc(3, *str++);
} /* disp_put4 */
static uint8_t _hexnibble(uint8_t value)
{
value &= 0x0F;
return (value < 0x0A) ? ('0' + value)
: ('A' + value - 0x0A);
} /* _hexnibble */
#endif /* defined(DISP_WR) */
/* Send one byte to target, and return received one */
static uint8_t spi_rxtx(uint8_t val)
{
SPDR = val;
loop_until_bit_is_set(SPSR, SPIF);
return SPDR;
} /* spi_rxtx */
/* Control reset and SPI lines */
static void set_reset(uint8_t mode)
{
if (mode) {
ISP_INACTIVE();
} else {
ISP_ACTIVE();
}
} /* set_reset */
/* writes a byte to target flash/eeprom */
static void mem_write(uint8_t cmd, uint16_t addr, uint8_t val)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
spi_rxtx(val);
/* remember values for polling */
last_cmd = cmd;
last_addr = addr;
last_val = val;
} /* mem_write */
/* read a byte from target flash/eeprom */
static uint8_t mem_read(uint8_t cmd, uint16_t addr)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
return spi_rxtx(0x00);
} /* mem_read */
/* wait until byte/page is written to target memory */
static void poll(void)
{
uint8_t cmd, val, poll = 0xFF;
if (((last_val == 0x00) && (device.flags & POLL_00)) ||
((last_val == 0x7F) && (device.flags & POLL_7F)) ||
((last_val == 0x80) && (device.flags & POLL_80)) ||
((last_val == 0xFF) && (device.flags & POLL_FF))
) {
/* wait default time */
_delay_ms(15);
return;
}
if (last_cmd == CMD_WRITE_EEPROM) {
cmd = CMD_READ_EEPROM;
} else {
/* CMD_WRITE_FLASH -> CMD_READ_FLASH */
cmd = (last_cmd & 0x08) | 0x20;
}
/* poll until we get correct value */
do {
val = mem_read(cmd, last_addr);
} while ((val != last_val) && poll--);
} /* poll */
static void mem_pagewrite(uint16_t addr)
{
spi_rxtx(CMD_WRITE_FLASH_PAGE);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
spi_rxtx(0x00);
poll();
} /* mem_pagewrite */
static void reset_statemachine(uint8_t event);
static volatile uint16_t reset_timer = 0x0000;
static volatile uint8_t reset_state;
static uint16_t addr = 0x0000;
static void cmdloop(void) __attribute__ ((noreturn));
static void cmdloop(void)
{
static uint8_t page_buf[256];
while (1) {
switch (ser_recv()) {
/* Enter programming mode */
case 'P': {
reset_statemachine(EV_PROG_ENTER);
while (1) {
if (reset_state == STATE_IDLE) {
/* device not supported */
ser_send('!');
break;
} else if (reset_state == STATE_RESET_PROGMODE) {
if (device.flags & POLL_UNTESTED) {
reset_statemachine(EV_PROG_LEAVE);
/* untested device */
ser_send('!');
} else {
/* supported device */
ser_send('\r');
}
break;
}
}
break;
}
/* Autoincrement address */
case 'a':
ser_send('Y');
break;
/* Set address */
case 'A':
addr = (ser_recv() << 8);
addr |= ser_recv();
ser_send('\r');
break;
/* Write program memory, low byte */
case 'c':
led_mode = LED_FAST;
mem_write(CMD_LOAD_FLASH_LO, addr, ser_recv());
/* poll on byte addressed targets */
if (device.pagemask == 0x00) {
poll();
}
ser_send('\r');
break;
/* Write program memory, high byte */
case 'C':
led_mode = LED_FAST;
mem_write(CMD_LOAD_FLASH_HI, addr, ser_recv());
/* poll on byte addressed targets */
if (device.pagemask == 0x00) {
poll();
}
addr++;
ser_send('\r');
break;
/* Issue Page Write */
case 'm':
led_mode = LED_FAST;
mem_pagewrite(last_addr);
ser_send('\r');
break;
/* Read Lock Bits */
case 'r':
ser_send(mem_read(CMD_READ_LOCK_1, CMD_READ_LOCK_2 << 8));
ser_send('\r');
break;
/* Read program memory */
case 'R':
led_mode = LED_SLOW;
ser_send(mem_read(CMD_READ_FLASH_HI, addr));
ser_send(mem_read(CMD_READ_FLASH_LO, addr));
addr++;
break;
/* Read data memory */
case 'd':
led_mode = LED_SLOW;
ser_send(mem_read(CMD_READ_EEPROM, addr));
addr++;
break;
/* Write data memory */
case 'D':
led_mode = LED_FAST;
mem_write(CMD_WRITE_EEPROM, addr, ser_recv());
poll();
addr++;
ser_send('\r');
break;
/* Chip erase */
case 'e':
spi_rxtx(CMD_CHIP_ERASE_1);
spi_rxtx(CMD_CHIP_ERASE_2);
spi_rxtx(0x00);
spi_rxtx(0x00);
_delay_ms(10);
ser_send('\r');
break;
/* Write lock bits */
case 'l': {
uint8_t val = ser_recv();
spi_rxtx(CMD_WRITE_LOCK_1);
spi_rxtx(CMD_WRITE_LOCK_2);
spi_rxtx(0x00);
spi_rxtx(val);
_delay_ms(10);
ser_send('\r');
break;
}
/* Read fusebits */
case 'F':
ser_send(mem_read(CMD_READ_FUSE_1, CMD_READ_FUSE_2 << 8));
break;
/* Read high fusebits */
case 'N':
ser_send(mem_read(CMD_READ_FUSE_H_1, CMD_READ_FUSE_H_2 << 8));
break;
/* Read extended fusebits */
case 'Q':
ser_send(mem_read(CMD_READ_FUSE_E_1, CMD_READ_FUSE_E_2 << 8));
break;
/* Leave programming mode */
case 'L':
/* Exit Bootloader */
case 'E':
reset_statemachine(EV_PROG_LEAVE);
ser_send('\r');
break;
/* Select device type */
case 'T': {
ser_recv(); // ignore
ser_send('\r');
break;
}
/* Read signature bytes */
case 's': {
uint8_t i = 2;
do {
ser_send(device.sig[i]);
} while (i--);
break;
}
/* Return supported device codes */
case 't': {
uint8_t limit = 0x00;
while (1) {
uint8_t i;
uint8_t search = 0xFF;
for (i = 0; i < ARRAY_SIZE(devices); i++) {
uint8_t devcode = pgm_read_byte(&devices[i].devcode);
if ((devcode > limit) && (devcode < search)) {
search = devcode;
}
}
if (search == 0xFF)
break;
ser_send(search);
limit = search;
}
ser_send(0x00);
break;
}
/* Return software identifier */
case 'S':
ser_send('A');
ser_send('V');
ser_send('R');
ser_send('-');
ser_send('I');
ser_send('S');
ser_send('P');
break;
/* Return software version */
case 'V':
ser_send('3');
ser_send('8');
break;
/* Return hardware version */
case 'v':
ser_send('1');
ser_send('2');
break;
/* Return programmer type */
case 'p':
ser_send('S');
break;
/* Set LED */
case 'x':
ser_recv();
led_mode = LED_ON;
break;
/* Clear LED */
case 'y':
ser_recv();
led_mode = LED_OFF;
break;
/* Report Block write Mode */
case 'b': {
ser_send('Y');
ser_send(sizeof(page_buf) >> 8);
ser_send(sizeof(page_buf) & 0xFF);
break;
}
/* Block Write */
case 'B': {
uint16_t size, i;
uint8_t type;
led_mode = LED_FAST;
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
for (i = 0; i < size; i++)
page_buf[i] = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
mem_write(CMD_LOAD_FLASH_LO, addr, page_buf[i]);
mem_write(CMD_LOAD_FLASH_HI, addr, page_buf[i+1]);
addr++;
if ((addr & device.pagemask) == 0x00) {
mem_pagewrite(last_addr);
}
}
if ((device.pagemask != 0x00) &&
(size != ((device.pagemask +1) << 1))
) {
mem_pagewrite(last_addr);
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
mem_write(CMD_WRITE_EEPROM, addr, page_buf[i]);
poll();
addr++;
}
}
ser_send('\r');
break;
}
/* Block Read */
case 'g': {
uint16_t size, i;
uint8_t type;
led_mode = LED_SLOW;
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
ser_send(mem_read(CMD_READ_FLASH_LO, addr));
ser_send(mem_read(CMD_READ_FLASH_HI, addr));
addr++;
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
ser_send(mem_read(CMD_READ_EEPROM, addr));
addr++;
}
}
break;
}
/* Write fusebits */
case 'f': {
uint8_t val = ser_recv();
spi_rxtx(CMD_WRITE_FUSE_1);
spi_rxtx(CMD_WRITE_FUSE_2);
spi_rxtx(0x00);
spi_rxtx(val);
_delay_ms(10);
ser_send('\r');
break;
}
/* Universial command */
case ':': {
uint8_t val[3];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
ser_send(spi_rxtx(val[2]));
_delay_ms(10);
ser_send('\r');
break;
}
/* New universal command */
case '.': {
uint8_t val[4];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
val[3] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
spi_rxtx(val[2]);
ser_send(spi_rxtx(val[3]));
/* most CMD_WRITE_* commands need delay */
if (val[0] == CMD_WRITE_LOCK_1)
{
_delay_ms(10);
}
ser_send('\r');
break;
}
/* ESC */
case 0x1B:
break;
default:
ser_send('?');
break;
}
}
} /* cmdloop */
static void reset_statemachine(uint8_t event)
{
static uint8_t reset_retries;
static uint8_t reset_cause;
uint8_t state;
uint8_t oldstate;
uint16_t timer;
cli();
/* copy state, disable timer */
state = reset_state;
timer = reset_timer;
reset_timer = 0x0000;
sei();
do {
oldstate = state;
switch (state) {
case STATE_IDLE:
if (event == EV_STATE_ENTER) {
led_mode = LED_OFF;
timer = 0; /* stop timer */
/* put device in RUN mode */
set_reset(1);
#if defined(DISP_WR)
uint8_t *dst = disp_text;
uint8_t *src;
if (device.name[0] != '\0')
{
src = device.name;
while (*src != '\0')
{
*dst++ = *src++;
}
}
else
{
*dst++ = ' ';
*dst++ = '0';
*dst++ = 'X';
*dst++ = _hexnibble(device.sig[0] >> 4);
*dst++ = _hexnibble(device.sig[0]);
*dst++ = _hexnibble(device.sig[1] >> 4);
*dst++ = _hexnibble(device.sig[1]);
*dst++ = _hexnibble(device.sig[2] >> 4);
*dst++ = _hexnibble(device.sig[2]);
}
if (device.flags & POLL_UNTESTED) {
src = (uint8_t *)" untested";
while (*src != '\0') {
*dst++ = *src++;
}
}
*dst++ = ' ';
*dst++ = '\0';
disp_length = dst - disp_text;
disp_pos = 0x00;
#endif /* defined(DISP_WR) */
} else if ((event == EV_BUTTON_PRESSED) || (event == EV_PROG_ENTER)) {
reset_retries = 5;
reset_cause = event;
/* probe SPI speed of device */
if (spi_speed == SPI_SPEED_PROBE) {
spi_speed = 3;
}
state = STATE_RESET_SYNC;
}
break;
case STATE_RESET_SYNC:
if (event == EV_STATE_ENTER) {
led_mode = LED_ON;
timer = 1; /* timeout 50ms */
/* set SPI speed */
SPCR = spi_modes[spi_speed];
/* put device in ISP mode */
set_reset(0);
} else if (event == EV_TIMEOUT) {
uint8_t sync;
spi_rxtx(CMD_PROG_ENABLE_1);
spi_rxtx(CMD_PROG_ENABLE_2);
sync = spi_rxtx(0x00);
spi_rxtx(0x00);
memset(&device, 0x00, sizeof(struct _device));
if (sync == CMD_PROG_ENABLE_2) {
uint8_t i;
for (i = 0; i < 3; i++) {
device.sig[i] = mem_read(CMD_READ_SIG_1, (CMD_READ_SIG_2 << 8) | i);
}
for (i = 0; i < ARRAY_SIZE(devices); i++) {
if (memcmp_P(device.sig, devices[i].sig, sizeof(device.sig)) == 0) {
memcpy_P(&device, &devices[i], sizeof(struct _device));
break;
}
}
/* unknown devices are untested */
if (device.name[0] == '\0')
{
device.flags |= POLL_UNTESTED;
}
state = (reset_cause == EV_PROG_ENTER) ? STATE_RESET_PROGMODE
: STATE_IDLE;
} else {
state = STATE_RESET_RETRY;
}
}
break;
case STATE_RESET_RETRY:
if (event == EV_STATE_ENTER) {
led_mode = LED_OFF;
timer = 5; /* timeout 50ms */
/* put device in RUN mode */
set_reset(1);
} else if (event == EV_TIMEOUT) {
reset_retries--;
if (reset_retries > 0) {
/* try lower frequency */
if (spi_speed > 0) {
spi_speed--;
}
state = STATE_RESET_SYNC;
} else {
/* got no sync, probe speed again next time */
spi_speed = SPI_SPEED_PROBE;
state = STATE_IDLE;
}
}
break;
case STATE_RESET_PROGMODE:
if (event == EV_STATE_ENTER) {
} else if (event == EV_PROG_LEAVE) {
/* was in prog mode (osc changed?), probe speed next time */
spi_speed = SPI_SPEED_PROBE;
state = STATE_IDLE;
} else if (event == EV_BUTTON_PRESSED) {
state = STATE_IDLE;
}
break;
default:
state = STATE_IDLE;
break;
}
event = (oldstate != state) ? EV_STATE_ENTER
: EV_NONE;
} while (oldstate != state);
cli();
/* copy state back */
reset_timer = timer;
reset_state = state;
sei();
} /* reset_statemachine */
/* time keeping */
ISR(TIMER0_OVF_vect)
{
uint8_t event = EV_NONE;
/* restart timer */
TCNT0 = TIMER_RELOAD;
static uint8_t prev_pressed;
if (ISP_CHECK()) {
if (!prev_pressed) {
event = EV_BUTTON_PRESSED;
prev_pressed = 1;
}
} else {
if (prev_pressed) {
event = EV_BUTTON_RELEASED;
prev_pressed = 0;
}
}
if (reset_timer) {
reset_timer--;
if (reset_timer == 0) {
event = EV_TIMEOUT;
}
}
if (event != EV_NONE) {
reset_statemachine(event);
}
/* update LED */
static uint8_t led_timer;
if (led_mode & ((led_timer++ & 0xFF) | 0x80)) {
ISP_LED_ON();
} else {
ISP_LED_OFF();
}
#if defined(DISP_WR)
if (reset_state == STATE_IDLE) {
if (disp_length != 0x00) {
if (!(led_timer & 0x1F)) {
disp_put4(disp_text + disp_pos);
if (disp_pos < (disp_length -4)) {
disp_pos++;
} else {
disp_putc(0, 'R');
disp_putc(1, 'U');
disp_putc(2, 'N');
disp_putc(3, '-');
disp_length = 0x00;
disp_pos = 0x00;
}
}
} else {
switch (led_timer & 0x18) {
case 0x00: disp_putc(3, '-'); break;
case 0x08: disp_putc(3, '\\'); break;
case 0x10: disp_putc(3, '1'); break;
case 0x18: disp_putc(3, '/'); break;
default:
break;
}
}
} else if (reset_state == STATE_RESET_PROGMODE) {
uint16_t byte_addres = (addr << 1);
disp_putc(0, _hexnibble(byte_addres >> 12));
disp_putc(1, _hexnibble(byte_addres >> 8));
disp_putc(2, _hexnibble(byte_addres >> 4));
disp_putc(3, _hexnibble(byte_addres));
}
#endif /* defined(DISP_WR) */
} /* TIMER0_OVF_vect */
#if defined(__AVR_ATmega328P__)
/*
* For newer devices the watchdog timer remains active even after a
* system reset. So disable it as soon as possible.
* automagically called on startup
*/
void disable_wdt_timer(void) __attribute__((naked, section(".init3")));
void disable_wdt_timer(void)
{
MCUSR = 0;
WDTCSR = (1<<WDCE) | (1<<WDE);
WDTCSR = (0<<WDE);
} /* disable_wdt_timer */
#endif /* defined(__AVR_ATmega328P__) */
int main(void)
{
GPIO_INIT();
#if defined(OSCCAL_VALUE)
OSCCAL = OSCCAL_VALUE;
#endif /* defined(OSCCAL_VALUE) */
#if defined(__AVR_ATmega16__)
/* Set baud rate */
UBRRH = (UART_CALC_BAUDRATE(BAUDRATE)>>8) & 0xFF;
UBRRL = (UART_CALC_BAUDRATE(BAUDRATE) & 0xFF);
/* enable usart with 8n1 */
UCSRB = (1<<TXEN) | (1<<RXEN);
UCSRC = (1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ0);
#elif defined(__AVR_ATmega328P__)
/* Set baud rate */
UBRR0H = (UART_CALC_BAUDRATE(BAUDRATE)>>8) & 0xFF;
UBRR0L = (UART_CALC_BAUDRATE(BAUDRATE) & 0xFF);
/* enable usart with 8n1 */
UCSR0B = (1<<TXEN0) | (1<<RXEN0);
UCSR0C = (1<<UCSZ01) | (1<<UCSZ00);
#endif
/* enable SPI master mode */
SPCR = SPI_MODE4;
#if defined(__AVR_ATmega16__)
/* timer0, FCPU/1024, overflow interrupt */
TCCR0 = (1<<CS02) | (1<<CS00);
TIMSK = (1<<TOIE0);
#elif defined(__AVR_ATmega328P__)
TCCR0B = (1<<CS02) | (1<<CS00);
TIMSK0 = (1<<TOIE0);
#endif
/* init statemachine */
reset_statemachine(EV_BUTTON_PRESSED);
sei();
cmdloop();
} /* main */