/* * drivers/mtd/nand.c * * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. * Basic support for AG-AND chips is provided. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/tech/nand.html * * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * 2002 Thomas Gleixner (tglx@linutronix.de) * * 02-08-2004 tglx: support for strange chips, which cannot auto increment * pages on read / read_oob * * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes * pointed this out, as he marked an auto increment capable chip * as NOAUTOINCR in the board driver. * Make reads over block boundaries work too * * 04-14-2004 tglx: first working version for 2k page size chips * * 05-19-2004 tglx: Basic support for Renesas AG-AND chips * * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared * among multiple independend devices. Suggestions and initial patch * from Ben Dooks * * Credits: * David Woodhouse for adding multichip support * * Aleph One Ltd. and Toby Churchill Ltd. for supporting the * rework for 2K page size chips * * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW * if we have HW ecc support. * The AG-AND chips have nice features for speed improvement, * which are not supported yet. Read / program 4 pages in one go. * * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ /* XXX U-BOOT XXX */ #if 0 #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTD_PARTITIONS #include #endif #endif #include #if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) #include #include #include #include #include #include #include #include #include #ifdef CONFIG_JFFS2_NAND #include #endif /* Define default oob placement schemes for large and small page devices */ static struct nand_oobinfo nand_oob_8 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {3, 2}, {6, 2} } }; static struct nand_oobinfo nand_oob_16 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 6, .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = { {8, 8} } }; static struct nand_oobinfo nand_oob_64 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {2, 38} } /* {2, 38} {6, 34}*/ }; /* RS 64 ECC */ static struct nand_oobinfo nand_oob_64_rs = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 40, .eccpos = { 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {6,18} } }; static struct nand_oobinfo nand_oob_128 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 48, .eccpos = { 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}, .oobfree = { {2, 78} } }; /* RS 128 ECC */ static struct nand_oobinfo nand_oob_128_rs = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 80, .eccpos = { 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}, .oobfree = { {2, 46} } }; static struct nand_oobinfo nand_oob_218 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 48, .eccpos = { 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217}, .oobfree = {{6,164}} }; /* RS 218 ECC */ static struct nand_oobinfo nand_oob_218_rs = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 80, .eccpos = { 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217}, .oobfree = {{6,132}} }; /* This is used for padding purposes in nand_write_oob */ static u_char ffchars[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; /* * NAND low-level MTD interface functions */ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len); static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len); static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len); static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf); static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf); /* XXX U-BOOT XXX */ #if 0 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t * retlen); static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); #endif static int nand_erase (struct mtd_info *mtd, struct erase_info *instr); static void nand_sync (struct mtd_info *mtd); /* Some internal functions */ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, struct nand_oobinfo *oobsel, int mode); #ifdef CONFIG_MTD_NAND_VERIFY_WRITE static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode); #else #define nand_verify_pages(...) (0) #endif static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state); char nandenv[10]; extern int nandenvECC; /** * nand_release_device - [GENERIC] release chip * @mtd: MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device */ /* XXX U-BOOT XXX */ #if 0 static void nand_release_device (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; /* De-select the NAND device */ this->select_chip(mtd, -1); /* Do we have a hardware controller ? */ if (this->controller) { spin_lock(&this->controller->lock); this->controller->active = NULL; spin_unlock(&this->controller->lock); } /* Release the chip */ spin_lock (&this->chip_lock); this->state = FL_READY; wake_up (&this->wq); spin_unlock (&this->chip_lock); } #else static void nand_release_device (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; this->select_chip(mtd, -1); /* De-select the NAND device */ } #endif /** * nand_read_byte - [DEFAULT] read one byte from the chip * @mtd: MTD device structure * * Default read function for 8bit buswith */ static u_char nand_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; return readb(this->IO_ADDR_R); } /** * nand_write_byte - [DEFAULT] write one byte to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * * Default write function for 8it buswith */ static void nand_write_byte(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; writeb(byte, this->IO_ADDR_W); } /** * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip * @mtd: MTD device structure * * Default read function for 16bit buswith with * endianess conversion */ static u_char nand_read_byte16(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; return (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); } /** * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * * Default write function for 16bit buswith with * endianess conversion */ static void nand_write_byte16(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); } /** * nand_read_word - [DEFAULT] read one word from the chip * @mtd: MTD device structure * * Default read function for 16bit buswith without * endianess conversion */ static u16 nand_read_word(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; return readw(this->IO_ADDR_R); } /** * nand_write_word - [DEFAULT] write one word to the chip * @mtd: MTD device structure * @word: data word to write * * Default write function for 16bit buswith without * endianess conversion */ static void nand_write_word(struct mtd_info *mtd, u16 word) { struct nand_chip *this = mtd->priv; writew(word, this->IO_ADDR_W); } /** * nand_select_chip - [DEFAULT] control CE line * @mtd: MTD device structure * @chip: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ static void nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; #if defined(MV78XX0) unsigned int *p = (unsigned int *)CFG_PT_BASE(whoAmI()) + 6; #else unsigned int *p = (unsigned int *)CFG_PT_BASE + 6; #endif unsigned int dummy = 0, dummy1 = 0; static char *env = NULL, *env1 = NULL; if(!env) env = getenv("enaMonExt"); if(env != NULL && (strcmp(env,"yes") == 0 || strcmp(env,"YES") == 0)) { dummy = 1; if(!env1) env1 = getenv("nandEccAcc"); if(env1 != NULL && (strcmp(env1,"yes") == 0 || strcmp(env1,"YES") == 0)) dummy1 = 1; } switch(chip) { case -1: this->hwcontrol(mtd, NAND_CTL_CLRNCE); if(dummy == 1 && dummy1 == 1) { /* Change Uboot PTE to non cacheable when done */ *p = (0xc12 | (6 << 20)); dummy = (unsigned int)p; /* Flush TLB and cache */ __asm__ __volatile__("mcr p15, 0, %0, c7, c14, 1\n":: "r" (dummy)); /* Flush D cache PTE */ __asm__ __volatile__("mcr p15, 1, %0, c15, c10, 1\n":: "r" (dummy)); /* L2 flush */ dummy= 0x600000; dummy1= 0x700000; __asm__ __volatile__("mcr p15, 5, %0, c15, c15, 0\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 5, %0, c15, c15, 1\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 1, %0, c15, c9, 4\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 1, %0, c15, c9, 5\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 1, %0, c15, c11, 4\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 1, %0, c15, c11, 5\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 0, %0, c8, c7, 0\n":: "r" (dummy)); /* TLB invalidate */ } break; case 0: this->hwcontrol(mtd, NAND_CTL_SETNCE); if(dummy == 1 && dummy1 == 1) { /* Change Uboot PTE to cacheable to accelerate ECC calculation */ *p = (0xc1e | (6 << 20)); dummy= (unsigned int)p; /* Flush TLB and cache */ __asm__ __volatile__("mcr p15, 0, %0, c7, c14, 1\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 1, %0, c15, c10, 1\n":: "r" (dummy)); /* L2 flush */ dummy= 0x600000; dummy1= 0x700000; __asm__ __volatile__("mcr p15, 5, %0, c15, c15, 0\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 5, %0, c15, c15, 1\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 1, %0, c15, c9, 4\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 1, %0, c15, c9, 5\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 1, %0, c15, c11, 4\n":: "r" (dummy)); __asm__ __volatile__("mcr p15, 1, %0, c15, c11, 5\n":: "r" (dummy1)); __asm__ __volatile__("mcr p15, 0, %0, c8, c7, 0\n":: "r" (dummy)); } break; default: BUG(); } } /** * nand_write_buf - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 8bit buswith */ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; for (i=0; iIO_ADDR_W); } /** * nand_read_buf - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 8bit buswith */ static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u32 *p = (u32 *) buf; if(((u32)buf % 4) == 0 && (len % 4) == 0) { len >>= 2; for (i=0; iIO_ADDR_R)); } else { for (i=0; iIO_ADDR_R); } } /** * nand_verify_buf - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 8bit buswith */ static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u32 *p = (u32 *) buf; if(((u32)buf % 4) == 0 && (len % 4) == 0) { len >>= 2; for (i=0; iIO_ADDR_R))) return -EFAULT; } else { for (i=0; iIO_ADDR_R)) return -EFAULT; } return 0; } /** * nand_write_buf16 - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 16bit buswith */ static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i=0; iIO_ADDR_W); } /** * nand_read_buf16 - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 16bit buswith */ static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i=0; iIO_ADDR_R); } /** * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 16bit buswith */ static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) { int i; struct nand_chip *this = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i=0; iIO_ADDR_R)) return -EFAULT; return 0; } /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * * Check, if the block is bad. */ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { int page, chipnr, res = 0; struct nand_chip *this = mtd->priv; u16 bad; if (getchip) { page = (int)(ofs >> this->page_shift); chipnr = (int)(ofs >> this->chip_shift); /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_READING); /* Select the NAND device */ this->select_chip(mtd, chipnr); } else page = (int) ofs; if (this->options & NAND_BUSWIDTH_16) { this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask); bad = cpu_to_le16(this->read_word(mtd)); if (this->badblockpos & 0x1) bad >>= 1; if ((bad & 0xFF) != 0xff) res = 1; } else { this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask); if (this->read_byte(mtd) != 0xff) res = 1; } if (getchip) { /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); } return res; } /** * nand_default_block_markbad - [DEFAULT] mark a block bad * @mtd: MTD device structure * @ofs: offset from device start * * This is the default implementation, which can be overridden by * a hardware specific driver. */ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *this = mtd->priv; u_char buf[2] = {0, 0}; size_t retlen; int block; /* Get block number */ block = ((int) ofs) >> this->bbt_erase_shift; this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* Do we have a flash based bad block table ? */ if (this->options & NAND_USE_FLASH_BBT) return nand_update_bbt (mtd, ofs); /* We write two bytes, so we dont have to mess with 16 bit access */ ofs += mtd->oobsize + (this->badblockpos & ~0x01); ofs &= ~(mtd->erasesize-1); return nand_write_oob (mtd, ofs , 2, &retlen, buf); } /** * nand_check_wp - [GENERIC] check if the chip is write protected * @mtd: MTD device structure * Check, if the device is write protected * * The function expects, that the device is already selected */ static int nand_check_wp (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; /* Check the WP bit */ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); return (this->read_byte(mtd) & 0x80) ? 0 : 1; } /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) { struct nand_chip *this = mtd->priv; if (!this->bbt) return this->block_bad(mtd, ofs, getchip); /* Return info from the table */ return nand_isbad_bbt (mtd, ofs, allowbbt); } /** * nand_command - [DEFAULT] Send command to NAND device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This function is used for small page * devices (256/512 Bytes per page) */ static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) { register struct nand_chip *this = mtd->priv; /* Begin command latch cycle */ this->hwcontrol(mtd, NAND_CTL_SETCLE); /* * Write out the command to the device. */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->oobblock) { /* OOB area */ column -= mtd->oobblock; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } this->write_byte(mtd, readcmd); } this->write_byte(mtd, command); /* Set ALE and clear CLE to start address cycle */ this->hwcontrol(mtd, NAND_CTL_CLRCLE); if (column != -1 || page_addr != -1) { this->hwcontrol(mtd, NAND_CTL_SETALE); /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (this->options & NAND_BUSWIDTH_16) column >>= 1; this->write_byte(mtd, column); } if (page_addr != -1) { this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); /* One more address cycle for devices > 32MiB */ if (this->chipsize > (32 << 20)) this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); } /* Latch in address */ this->hwcontrol(mtd, NAND_CTL_CLRALE); } /* * program and erase have their own busy handlers * status and sequential in needs no delay */ switch (command) { case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: return; case NAND_CMD_RESET: if (this->dev_ready) break; udelay(this->chip_delay); this->hwcontrol(mtd, NAND_CTL_SETCLE); this->write_byte(mtd, NAND_CMD_STATUS); this->hwcontrol(mtd, NAND_CTL_CLRCLE); while ( !(this->read_byte(mtd) & 0x40)); return; /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!this->dev_ready) { udelay (this->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay (100); /* wait until command is processed */ while (!this->dev_ready(mtd)); } /** * nand_command_lp - [DEFAULT] Send command to NAND large page device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page devices * We dont have the seperate regions as we have in the small page devices. * We must emulate NAND_CMD_READOOB to keep the code compatible. * */ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr) { register struct nand_chip *this = mtd->priv; /* Emulate NAND_CMD_READOOB */ if (command == NAND_CMD_READOOB) { column += mtd->oobblock; command = NAND_CMD_READ0; } /* Begin command latch cycle */ this->hwcontrol(mtd, NAND_CTL_SETCLE); /* Write out the command to the device. */ this->write_byte(mtd, command); /* End command latch cycle */ this->hwcontrol(mtd, NAND_CTL_CLRCLE); if (column != -1 || page_addr != -1) { this->hwcontrol(mtd, NAND_CTL_SETALE); /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (this->options & NAND_BUSWIDTH_16) column >>= 1; this->write_byte(mtd, column & 0xff); this->write_byte(mtd, column >> 8); } if (page_addr != -1) { this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); /* One more address cycle for devices > 128MiB */ if (this->chipsize > (128 << 20)) this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff)); } /* Latch in address */ this->hwcontrol(mtd, NAND_CTL_CLRALE); } /* * program and erase have their own busy handlers * status and sequential in needs no delay */ switch (command) { case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: return; case NAND_CMD_RESET: if (this->dev_ready) break; udelay(this->chip_delay); this->hwcontrol(mtd, NAND_CTL_SETCLE); this->write_byte(mtd, NAND_CMD_STATUS); this->hwcontrol(mtd, NAND_CTL_CLRCLE); while ( !(this->read_byte(mtd) & 0x40)); return; case NAND_CMD_READ0: /* Begin command latch cycle */ this->hwcontrol(mtd, NAND_CTL_SETCLE); /* Write out the start read command */ this->write_byte(mtd, NAND_CMD_READSTART); /* End command latch cycle */ this->hwcontrol(mtd, NAND_CTL_CLRCLE); /* Fall through into ready check */ /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!this->dev_ready) { udelay (this->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay (100); /* wait until command is processed */ while (!this->dev_ready(mtd)); } /** * nand_get_device - [GENERIC] Get chip for selected access * @this: the nand chip descriptor * @mtd: MTD device structure * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ /* XXX U-BOOT XXX */ #if 0 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) { struct nand_chip *active = this; DECLARE_WAITQUEUE (wait, current); /* * Grab the lock and see if the device is available */ retry: /* Hardware controller shared among independend devices */ if (this->controller) { spin_lock (&this->controller->lock); if (this->controller->active) active = this->controller->active; else this->controller->active = this; spin_unlock (&this->controller->lock); } if (active == this) { spin_lock (&this->chip_lock); if (this->state == FL_READY) { this->state = new_state; spin_unlock (&this->chip_lock); return; } } set_current_state (TASK_UNINTERRUPTIBLE); add_wait_queue (&active->wq, &wait); spin_unlock (&active->chip_lock); schedule (); remove_wait_queue (&active->wq, &wait); goto retry; } #else static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {} #endif /** * nand_wait - [DEFAULT] wait until the command is done * @mtd: MTD device structure * @this: NAND chip structure * @state: state to select the max. timeout value * * Wait for command done. This applies to erase and program only * Erase can take up to 400ms and program up to 20ms according to * general NAND and SmartMedia specs * */ /* XXX U-BOOT XXX */ #if 0 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) { unsigned long timeo = jiffies; int status; if (state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay (100); if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1); else this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); while (time_before(jiffies, timeo)) { /* Check, if we were interrupted */ if (this->state != state) return 0; if (this->dev_ready) { if (this->dev_ready(mtd)) break; } else { if (this->read_byte(mtd) & NAND_STATUS_READY) break; } yield (); } status = (int) this->read_byte(mtd); return status; return 0; } #else static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) { unsigned long timeo; if (state == FL_ERASING) timeo = (CFG_HZ * 400) / 1000; else timeo = (CFG_HZ * 20) / 1000; if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); else this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); reset_timer(); while (1) { if (get_timer(0) > timeo) { printf("Timeout!"); return 0x01; } if (this->dev_ready) { if (this->dev_ready(mtd)) break; } else { if (this->read_byte(mtd) & NAND_STATUS_READY) break; } } #ifdef PPCHAMELON_NAND_TIMER_HACK reset_timer(); while (get_timer(0) < 10); #endif /* PPCHAMELON_NAND_TIMER_HACK */ return this->read_byte(mtd); } #endif /** * nand_write_page - [GENERIC] write one page * @mtd: MTD device structure * @this: NAND chip structure * @page: startpage inside the chip, must be called with (page & this->pagemask) * @oob_buf: out of band data buffer * @oobsel: out of band selecttion structre * @cached: 1 = enable cached programming if supported by chip * * Nand_page_program function is used for write and writev ! * This function will always program a full page of data * If you call it with a non page aligned buffer, you're lost :) * * Cached programming is not supported yet. */ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, struct nand_oobinfo *oobsel, int cached) { int i, status; u_char ecc_code[NAND_MAX_OOBSIZE]; int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; uint *oob_config = oobsel->eccpos; int datidx = 0, eccidx = 0, eccsteps = this->eccsteps; int eccbytes = 0; /* FIXME: Enable cached programming */ cached = 0; /* Send command to begin auto page programming */ this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page); /* Write out complete page of data, take care of eccmode */ switch (eccmode) { /* No ecc, write all */ case NAND_ECC_NONE: printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); this->write_buf(mtd, this->data_poi, mtd->oobblock); break; /* Software ecc 3/256, write all */ case NAND_ECC_SOFT: for (; eccsteps; eccsteps--) { this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); for (i = 0; i < this->eccbytes; i++, eccidx++) /*RS ECC */ oob_buf[oob_config[eccidx]] = ecc_code[i]; datidx += this->eccsize; } this->write_buf(mtd, this->data_poi, mtd->oobblock); break; default: eccbytes = this->eccbytes; for (; eccsteps; eccsteps--) { /* enable hardware ecc logic for write */ this->enable_hwecc(mtd, NAND_ECC_WRITE); this->write_buf(mtd, &this->data_poi[datidx], this->eccsize); this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); for (i = 0; i < eccbytes; i++, eccidx++) oob_buf[oob_config[eccidx]] = ecc_code[i]; /* If the hardware ecc provides syndromes then * the ecc code must be written immidiately after * the data bytes (words) */ if (this->options & NAND_HWECC_SYNDROME) this->write_buf(mtd, ecc_code, eccbytes); datidx += this->eccsize; } break; } /* Write out OOB data */ if (this->options & NAND_HWECC_SYNDROME) this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); else this->write_buf(mtd, oob_buf, mtd->oobsize); /* Send command to actually program the data */ this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); if (!cached) { /* call wait ready function */ status = this->waitfunc (mtd, this, FL_WRITING); /* See if device thinks it succeeded */ if (status & 0x01) { DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); return -EIO; } } else { /* FIXME: Implement cached programming ! */ /* wait until cache is ready*/ /* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */ } return 0; } #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /** * nand_verify_pages - [GENERIC] verify the chip contents after a write * @mtd: MTD device structure * @this: NAND chip structure * @page: startpage inside the chip, must be called with (page & this->pagemask) * @numpages: number of pages to verify * @oob_buf: out of band data buffer * @oobsel: out of band selecttion structre * @chipnr: number of the current chip * @oobmode: 1 = full buffer verify, 0 = ecc only * * The NAND device assumes that it is always writing to a cleanly erased page. * Hence, it performs its internal write verification only on bits that * transitioned from 1 to 0. The device does NOT verify the whole page on a * byte by byte basis. It is possible that the page was not completely erased * or the page is becoming unusable due to wear. The read with ECC would catch * the error later when the ECC page check fails, but we would rather catch * it early in the page write stage. Better to write no data than invalid data. */ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) { int i, j, datidx = 0, oobofs = 0, res = -EIO; int eccsteps = this->eccsteps; int hweccbytes; u_char oobdata[64]; hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; /* Send command to read back the first page */ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page); for(;;) { for (j = 0; j < eccsteps; j++) { /* Loop through and verify the data */ if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { printf ("Failed write verify, nand offset 0x%08x. Suggest to erase block and repeat write operation!\n " "If problem persists suggest marking block as bad (nand markbad ) and repeating the operation!\n", page * mtd->oobblock); goto out; } datidx += mtd->eccsize; /* Have we a hw generator layout ? */ if (!hweccbytes) continue; if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { printf ("Failed write verify, nand offset 0x%08x. Suggest to erase block and repeat write operation!\n " "If problem persists suggest marking block as bad (nand markbad ) and repeating the operation!\n", page * mtd->oobblock); goto out; } oobofs += hweccbytes; } /* check, if we must compare all data or if we just have to * compare the ecc bytes */ if (oobmode) { if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { printf ("Failed write verify, nand offset 0x%08x. Suggest to erase block and repeat write operation!\n " "If problem persists suggest marking block as bad (nand markbad ) and repeating the operation!\n", page * mtd->oobblock); goto out; } } else { /* Read always, else autoincrement fails */ this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { int ecccnt = oobsel->eccbytes; for (i = 0; i < ecccnt; i++) { int idx = oobsel->eccpos[i]; if (oobdata[idx] != oob_buf[oobofs + idx] ) { printf("%s: Failed ECC write \ verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i); goto out; } } } } oobofs += mtd->oobsize - hweccbytes * eccsteps; page++; numpages--; /* Apply delay or wait for ready/busy pin * Do this before the AUTOINCR check, so no problems * arise if a chip which does auto increment * is marked as NOAUTOINCR by the board driver. * Do this also before returning, so the chip is * ready for the next command. */ if (!this->dev_ready) udelay (this->chip_delay); else while (!this->dev_ready(mtd)); /* All done, return happy */ if (!numpages) return 0; /* Check, if the chip supports auto page increment */ if (!NAND_CANAUTOINCR(this)) this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); } /* * Terminate the read command. We come here in case of an error * So we must issue a reset command. */ out: this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1); return res; } #endif /** * nand_read - [MTD Interface] MTD compability function for nand_read_ecc * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL */ static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) { return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL); } /** * nand_read_ecc - [MTD Interface] Read data with ECC * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * @oob_buf: filesystem supplied oob data buffer * @oobsel: oob selection structure * * NAND read with ECC */ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel) { int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; struct nand_chip *this = mtd->priv; u_char *data_poi, *oob_data = oob_buf; u_char ecc_calc[NAND_MAX_OOBSIZE]; u_char ecc_code[NAND_MAX_OOBSIZE]; int eccmode, eccsteps; unsigned *oob_config; int datidx; int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; int eccbytes; int compareecc = 1; int oobreadlen; DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); *retlen = 0; return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd ,FL_READING); /* Select ECC function according to nandEcc environemnt variable */ if(nandenvECC == 0 && getenv("nandEcc") != NULL) strcpy(nandenv, getenv("nandEcc")); else if(nandenvECC == 1) strcpy(nandenv, "4bit"); if (mtd->oobblock < 2048 || strcmp(nandenv ,"1bit") == 0) { this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; this->eccbytes = 3; this->eccsize = 256; this->eccsteps = mtd->oobblock / 256; mtd->eccsize = this->eccsize; switch (mtd->oobsize) { case 8: this->autooob = &nand_oob_8; break; case 16: this->autooob = &nand_oob_16; break; case 64: this->autooob = &nand_oob_64; break; } } else if(mtd->oobblock >= 2048) { /* ECC RS, 512B DATA, 10B ECC */ this->calculate_ecc = nand_calculate_ecc_rs; this->correct_data = nand_correct_data_rs; this->eccsteps = mtd->oobblock / 512; this->eccbytes = 10; this->eccsize = 512; mtd->eccsize = this->eccsize; switch (mtd->oobsize) { case 64: this->autooob = &nand_oob_64_rs; break; case 128: this->autooob = &nand_oob_128_rs; break; case 218: this->autooob = &nand_oob_218_rs; break; } } /* The number of bytes available for the filesystem to place fs dependend * oob data */ mtd->oobavail = 0; for (i=0; this->autooob->oobfree[i][1]; i++) mtd->oobavail += this->autooob->oobfree[i][1]; strcpy(nandenv, ""); /* use userspace supplied oobinfo, if zero */ if (oobsel == NULL) oobsel = &mtd->oobinfo; /* Autoplace of oob data ? Use the default placement scheme */ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) oobsel = this->autooob; eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; oob_config = oobsel->eccpos; /* Select the NAND device */ chipnr = (int)(from >> this->chip_shift); this->select_chip(mtd, chipnr); /* First we calculate the starting page */ realpage = (int) (from >> this->page_shift); page = realpage & this->pagemask; /* Get raw starting column */ col = from & (mtd->oobblock - 1); end = mtd->oobblock; ecc = this->eccsize; eccbytes = this->eccbytes; if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) compareecc = 0; oobreadlen = mtd->oobsize; if (this->options & NAND_HWECC_SYNDROME) oobreadlen -= oobsel->eccbytes; /* Loop until all data read */ while (read < len) { int aligned = (!col && (len - read) >= end); /* * If the read is not page aligned, we have to read into data buffer * due to ecc, else we read into return buffer direct */ if (aligned) data_poi = &buf[read]; else data_poi = this->data_buf; /* Check, if we have this page in the buffer * * FIXME: Make it work when we must provide oob data too, * check the usage of data_buf oob field */ if (realpage == this->pagebuf && !oob_buf) { /* aligned read ? */ if (aligned) memcpy (data_poi, this->data_buf, end); goto readdata; } /* Check, if we must send the read command */ if (sndcmd) { this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); sndcmd = 0; } /* get oob area, if we have no oob buffer from fs-driver */ if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE || oobsel->useecc == MTD_NANDECC_AUTOPL_USR) oob_data = &this->data_buf[end]; eccsteps = this->eccsteps; switch (eccmode) { case NAND_ECC_NONE: { /* No ECC, Read in a page */ /* XXX U-BOOT XXX */ #if 0 static unsigned long lastwhinge = 0; if ((lastwhinge / HZ) != (jiffies / HZ)) { printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n"); lastwhinge = jiffies; } #else puts("Reading data from NAND FLASH without ECC is not recommended\n"); #endif this->read_buf(mtd, data_poi, end); break; } case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */ this->read_buf(mtd, data_poi, end); /*for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) */ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) /*RS ECC */ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); break; default: for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) { this->enable_hwecc(mtd, NAND_ECC_READ); this->read_buf(mtd, &data_poi[datidx], ecc); /* HW ecc with syndrome calculation must read the * syndrome from flash immidiately after the data */ if (!compareecc) { /* Some hw ecc generators need to know when the * syndrome is read from flash */ this->enable_hwecc(mtd, NAND_ECC_READSYN); this->read_buf(mtd, &oob_data[i], eccbytes); /* We calc error correction directly, it checks the hw * generator for an error, reads back the syndrome and * does the error correction on the fly */ if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); ecc_failed++; } } else { this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); } } break; } /* read oobdata */ this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ if (!compareecc) goto readoob; /* Pick the ECC bytes out of the oob data */ for (j = 0; j < oobsel->eccbytes; j++) ecc_code[j] = oob_data[oob_config[j]]; /* correct data, if neccecary */ for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) { ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); /* Get next chunk of ecc bytes */ j += eccbytes; /* Check, if we have a fs supplied oob-buffer, * This is the legacy mode. Used by YAFFS1 * Should go away some day */ if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { int *p = (int *)(&oob_data[mtd->oobsize]); p[i] = ecc_status; } if (ecc_status == -1) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); ecc_failed++; } } readoob: /* check, if we have a fs supplied oob-buffer */ if (oob_buf) { /* without autoplace. Legacy mode used by YAFFS1 */ switch(oobsel->useecc) { case MTD_NANDECC_AUTOPLACE: case MTD_NANDECC_AUTOPL_USR: /* Walk through the autoplace chunks */ for (i = 0, j = 0; j < mtd->oobavail; i++) { int from = oobsel->oobfree[i][0]; int num = oobsel->oobfree[i][1]; memcpy(&oob_buf[oob+j], &oob_data[from], num); j+= num; } oob += mtd->oobavail; break; case MTD_NANDECC_PLACE: /* YAFFS1 legacy mode */ oob_data += this->eccsteps * sizeof (int); default: oob_data += mtd->oobsize; } } readdata: /* Partial page read, transfer data into fs buffer */ if (!aligned) { for (j = col; j < end && read < len; j++) buf[read++] = data_poi[j]; this->pagebuf = realpage; } else read += mtd->oobblock; /* Apply delay or wait for ready/busy pin * Do this before the AUTOINCR check, so no problems * arise if a chip which does auto increment * is marked as NOAUTOINCR by the board driver. */ if (!this->dev_ready) udelay (this->chip_delay); else while (!this->dev_ready(mtd)); if (read == len) break; /* For subsequent reads align to page boundary. */ col = 0; /* Increment page address */ realpage++; page = realpage & this->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) sndcmd = 1; } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); /* * Return success, if no ECC failures, else -EBADMSG * fs driver will take care of that, because * retlen == desired len and result == -EBADMSG */ *retlen = read; return ecc_failed ? -EBADMSG : 0; } /** * nand_read_oob - [MTD Interface] NAND read out-of-band * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * NAND read out-of-band data from the spare area */ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) { int i, col, page, chipnr; struct nand_chip *this = mtd->priv; int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); /* Shift to get page */ page = (int)(from >> this->page_shift); chipnr = (int)(from >> this->chip_shift); /* Mask to get column */ col = from & (mtd->oobsize - 1); /* Initialize return length value */ *retlen = 0; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); *retlen = 0; return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd , FL_READING); /* Select the NAND device */ this->select_chip(mtd, chipnr); /* Send the read command */ this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask); /* * Read the data, if we read more than one page * oob data, let the device transfer the data ! */ i = 0; while (i < len) { int thislen = mtd->oobsize - col; thislen = min_t(int, thislen, len); this->read_buf(mtd, &buf[i], thislen); i += thislen; /* Apply delay or wait for ready/busy pin * Do this before the AUTOINCR check, so no problems * arise if a chip which does auto increment * is marked as NOAUTOINCR by the board driver. */ if (!this->dev_ready) udelay (this->chip_delay); else while (!this->dev_ready(mtd)); /* Read more ? */ if (i < len) { page++; col = 0; /* Check, if we cross a chip boundary */ if (!(page & this->pagemask)) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { /* For subsequent page reads set offset to 0 */ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); } } } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); /* Return happy */ *retlen = len; return 0; } /** * nand_read_raw - [GENERIC] Read raw data including oob into buffer * @mtd: MTD device structure * @buf: temporary buffer * @from: offset to read from * @len: number of bytes to read * @ooblen: number of oob data bytes to read * * Read raw data including oob into buffer */ int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) { struct nand_chip *this = mtd->priv; int page = (int) (from >> this->page_shift); int chip = (int) (from >> this->chip_shift); int sndcmd = 1; int cnt = 0; int pagesize = mtd->oobblock + mtd->oobsize; int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd , FL_READING); this->select_chip (mtd, chip); /* Add requested oob length */ len += ooblen; while (len) { if (sndcmd) this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask); sndcmd = 0; this->read_buf (mtd, &buf[cnt], pagesize); len -= pagesize; cnt += pagesize; page++; if (!this->dev_ready) udelay (this->chip_delay); else while (!this->dev_ready(mtd)); /* Check, if the chip supports auto page increment */ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) sndcmd = 1; } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return 0; } /** * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer * @mtd: MTD device structure * @fsbuf: buffer given by fs driver * @oobsel: out of band selection structre * @autoplace: 1 = place given buffer into the oob bytes * @numpages: number of pages to prepare * * Return: * 1. Filesystem buffer available and autoplacement is off, * return filesystem buffer * 2. No filesystem buffer or autoplace is off, return internal * buffer * 3. Filesystem buffer is given and autoplace selected * put data from fs buffer into internal buffer and * retrun internal buffer * * Note: The internal buffer is filled with 0xff. This must * be done only once, when no autoplacement happens * Autoplacement sets the buffer dirty flag, which * forces the 0xff fill before using the buffer again. * */ static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel, int autoplace, int numpages) { struct nand_chip *this = mtd->priv; int i, len, ofs; /* Zero copy fs supplied buffer */ if (fsbuf && !autoplace) return fsbuf; /* Check, if the buffer must be filled with ff again */ if (this->oobdirty) { memset (this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); this->oobdirty = 0; } /* If we have no autoplacement or no fs buffer use the internal one */ if (!autoplace || !fsbuf) return this->oob_buf; /* Walk through the pages and place the data */ this->oobdirty = 1; ofs = 0; while (numpages--) { for (i = 0, len = 0; len < mtd->oobavail; i++) { int to = ofs + oobsel->oobfree[i][0]; int num = oobsel->oobfree[i][1]; memcpy (&this->oob_buf[to], fsbuf, num); len += num; fsbuf += num; } ofs += mtd->oobavail; } return this->oob_buf; } #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0 /** * nand_write - [MTD Interface] compability function for nand_write_ecc * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL * */ static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL)); } /** * nand_write_ecc - [MTD Interface] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * @eccbuf: filesystem supplied oob data buffer * @oobsel: oob selection structure * * NAND write with ECC */ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) { int i,startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; int autoplace = 0, numpages, totalpages; struct nand_chip *this = mtd->priv; u_char *oobbuf, *bufstart; int ppblock = (1 << (this->phys_erase_shift - this->page_shift)); DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Initialize retlen, in case of early exit */ *retlen = 0; /* Do not allow write past end of device */ if ((to + len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n"); return -EINVAL; } /* reject writes, which are not page aligned */ if (NOTALIGNED (to) || NOTALIGNED(len)) { printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_WRITING); /* Calculate chipnr */ chipnr = (int)(to >> this->chip_shift); /* Select the NAND device */ this->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) goto out; /* Select ECC function according to nandEcc environemnt variable */ if(nandenvECC == 0 && getenv("nandEcc") != NULL) strcpy(nandenv, getenv("nandEcc")); else if(nandenvECC == 1) strcpy(nandenv, "4bit"); if (mtd->oobblock < 2048 || strcmp(nandenv ,"1bit") == 0) { this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; this->eccsteps = mtd->oobblock / 256; this->eccbytes = 3; this->eccsize = 256; mtd->eccsize = this->eccsize; switch (mtd->oobsize) { case 8: this->autooob = &nand_oob_8; break; case 16: this->autooob = &nand_oob_16; break; case 64: this->autooob = &nand_oob_64; break; } } else if(mtd->oobblock >= 2048) //"4bit" { this->calculate_ecc = nand_calculate_ecc_rs; this->correct_data = nand_correct_data_rs; this->eccbytes = 10; this->eccsteps = mtd->oobblock / 512; this->eccsize = 512; mtd->eccsize = this->eccsize; switch (mtd->oobsize) { case 64: this->autooob = &nand_oob_64_rs; break; case 128: this->autooob = &nand_oob_128_rs; break; case 218: this->autooob = &nand_oob_218_rs; break; } } /* The number of bytes available for the filesystem to place fs dependend * oob data */ mtd->oobavail = 0; for (i=0; this->autooob->oobfree[i][1]; i++) mtd->oobavail += this->autooob->oobfree[i][1]; strcpy(nandenv, ""); /* if oobsel is NULL, use chip defaults */ if (oobsel == NULL) oobsel = &mtd->oobinfo; /* Autoplace of oob data ? Use the default placement scheme */ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { oobsel = this->autooob; autoplace = 1; } if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) autoplace = 1; /* Setup variables and oob buffer */ totalpages = len >> this->page_shift; page = (int) (to >> this->page_shift); /* Invalidate the page cache, if we write to the cached page */ if (page <= this->pagebuf && this->pagebuf < (page + totalpages)) this->pagebuf = -1; /* Set it relative to chip */ page &= this->pagemask; startpage = page; /* Calc number of pages we can write in one go */ numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages); oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); bufstart = (u_char *)buf; /* Loop until all data is written */ while (written < len) { this->data_poi = (u_char*) &buf[written]; /* Write one page. If this is the last page to write * or the last page in this block, then use the * real pageprogram command, else select cached programming * if supported by the chip. */ ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); if (ret) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret); goto out; } /* Next oob page */ oob += mtd->oobsize; /* Update written bytes count */ written += mtd->oobblock; if (written == len) goto cmp; /* Increment page address */ page++; /* Have we hit a block boundary ? Then we have to verify and * if verify is ok, we have to setup the oob buffer for * the next pages. */ if (!(page & (ppblock - 1))){ int ofs; this->data_poi = bufstart; ret = nand_verify_pages (mtd, this, startpage, page - startpage, oobbuf, oobsel, chipnr, (eccbuf != NULL)); if (ret) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); goto out; } *retlen = written; bufstart = (u_char*) &buf[written]; ofs = autoplace ? mtd->oobavail : mtd->oobsize; if (eccbuf) eccbuf += (page - startpage) * ofs; totalpages -= page - startpage; numpages = min (totalpages, ppblock); page &= this->pagemask; startpage = page; oob = 0; this->oobdirty = 1; oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); /* Check, if we cross a chip boundary */ if (!page) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } } } /* Verify the remaining pages */ cmp: this->data_poi = bufstart; ret = nand_verify_pages (mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL)); if (!ret) *retlen = written; else DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); out: /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return ret; } /** * nand_write_oob - [MTD Interface] NAND write out-of-band * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write out-of-band */ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { int column, page, status, ret = -EIO, chipnr; struct nand_chip *this = mtd->priv; DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Shift to get page */ page = (int) (to >> this->page_shift); chipnr = (int) (to >> this->chip_shift); /* Mask to get column */ column = to & (mtd->oobsize - 1); /* Initialize return length value */ *retlen = 0; /* Do not allow write past end of page */ if ((column + len) > mtd->oobsize) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_WRITING); /* Select the NAND device */ this->select_chip(mtd, chipnr); /* Reset the chip. Some chips (like the Toshiba TC5832DC found in one of my DiskOnChip 2000 test units) will clear the whole data page too if we don't do this. I have no clue why, but I seem to have 'fixed' it in the doc2000 driver in August 1999. dwmw2. */ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Check, if it is write protected */ if (nand_check_wp(mtd)) goto out; /* Invalidate the page cache, if we write to the cached page */ if (page == this->pagebuf) this->pagebuf = -1; if (NAND_MUST_PAD(this)) { /* Write out desired data */ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask); /* prepad 0xff for partial programming */ this->write_buf(mtd, ffchars, column); /* write data */ this->write_buf(mtd, buf, len); /* postpad 0xff for partial programming */ this->write_buf(mtd, ffchars, mtd->oobsize - (len+column)); } else { /* Write out desired data */ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask); /* write data */ this->write_buf(mtd, buf, len); } /* Send command to program the OOB data */ this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1); status = this->waitfunc (mtd, this, FL_WRITING); /* See if device thinks it succeeded */ if (status & 0x01) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); ret = -EIO; goto out; } /* Return happy */ *retlen = len; #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask); if (this->verify_buf(mtd, buf, len)) { DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); ret = -EIO; goto out; } #endif ret = 0; out: /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return ret; } /* XXX U-BOOT XXX */ #if 0 /** * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc * @mtd: MTD device structure * @vecs: the iovectors to write * @count: number of vectors * @to: offset to write to * @retlen: pointer to variable to store the number of written bytes * * NAND write with kvec. This just calls the ecc function */ static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t * retlen) { return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL)); } /** * nand_writev_ecc - [MTD Interface] write with iovec with ecc * @mtd: MTD device structure * @vecs: the iovectors to write * @count: number of vectors * @to: offset to write to * @retlen: pointer to variable to store the number of written bytes * @eccbuf: filesystem supplied oob data buffer * @oobsel: oob selection structure * * NAND write with iovec with ecc */ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) { int i, page, len, total_len, ret = -EIO, written = 0, chipnr; int oob, numpages, autoplace = 0, startpage; struct nand_chip *this = mtd->priv; int ppblock = (1 << (this->phys_erase_shift - this->page_shift)); u_char *oobbuf, *bufstart; /* Preset written len for early exit */ *retlen = 0; /* Calculate total length of data */ total_len = 0; for (i = 0; i < count; i++) total_len += (int) vecs[i].iov_len; DEBUG (MTD_DEBUG_LEVEL3, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); /* Do not allow write past end of page */ if ((to + total_len) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n"); return -EINVAL; } /* reject writes, which are not page aligned */ if (NOTALIGNED (to) || NOTALIGNED(total_len)) { printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_WRITING); /* Get the current chip-nr */ chipnr = (int) (to >> this->chip_shift); /* Select the NAND device */ this->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) goto out; /* if oobsel is NULL, use chip defaults */ if (oobsel == NULL) oobsel = &mtd->oobinfo; /* Autoplace of oob data ? Use the default placement scheme */ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { oobsel = this->autooob; autoplace = 1; } if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) autoplace = 1; /* Setup start page */ page = (int) (to >> this->page_shift); /* Invalidate the page cache, if we write to the cached page */ if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift)) this->pagebuf = -1; startpage = page & this->pagemask; /* Loop until all kvec' data has been written */ len = 0; while (count) { /* If the given tuple is >= pagesize then * write it out from the iov */ if ((vecs->iov_len - len) >= mtd->oobblock) { /* Calc number of pages we can write * out of this iov in one go */ numpages = (vecs->iov_len - len) >> this->page_shift; /* Do not cross block boundaries */ numpages = min (ppblock - (startpage & (ppblock - 1)), numpages); oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); bufstart = (u_char *)vecs->iov_base; bufstart += len; this->data_poi = bufstart; oob = 0; for (i = 1; i <= numpages; i++) { /* Write one page. If this is the last page to write * then use the real pageprogram command, else select * cached programming if supported by the chip. */ ret = nand_write_page (mtd, this, page & this->pagemask, &oobbuf[oob], oobsel, i != numpages); if (ret) goto out; this->data_poi += mtd->oobblock; len += mtd->oobblock; oob += mtd->oobsize; page++; } /* Check, if we have to switch to the next tuple */ if (len >= (int) vecs->iov_len) { vecs++; len = 0; count--; } } else { /* We must use the internal buffer, read data out of each * tuple until we have a full page to write */ int cnt = 0; while (cnt < mtd->oobblock) { if (vecs->iov_base != NULL && vecs->iov_len) this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++]; /* Check, if we have to switch to the next tuple */ if (len >= (int) vecs->iov_len) { vecs++; len = 0; count--; } } this->pagebuf = page; this->data_poi = this->data_buf; bufstart = this->data_poi; numpages = 1; oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); ret = nand_write_page (mtd, this, page & this->pagemask, oobbuf, oobsel, 0); if (ret) goto out; page++; } this->data_poi = bufstart; ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0); if (ret) goto out; written += mtd->oobblock * numpages; /* All done ? */ if (!count) break; startpage = page & this->pagemask; /* Check, if we cross a chip boundary */ if (!startpage) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } } ret = 0; out: /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); *retlen = written; return ret; } #endif /** * single_erease_cmd - [GENERIC] NAND standard block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * Standard erase command for NAND chips */ static void single_erase_cmd (struct mtd_info *mtd, int page) { struct nand_chip *this = mtd->priv; /* Send commands to erase a block */ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); } /** * multi_erease_cmd - [GENERIC] AND specific block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * AND multi block erase command function * Erase 4 consecutive blocks */ static void multi_erase_cmd (struct mtd_info *mtd, int page) { struct nand_chip *this = mtd->priv; /* Send commands to erase a block */ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); } /** * nand_erase - [MTD Interface] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * * Erase one ore more blocks */ static int nand_erase (struct mtd_info *mtd, struct erase_info *instr) { return nand_erase_nand (mtd, instr, 0); } /** * nand_erase_intern - [NAND Interface] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * @allowbbt: allow erasing the bbt area * * Erase one ore more blocks */ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt) { int page, len, status, pages_per_block, ret, chipnr; struct nand_chip *this = mtd->priv; DEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); /* Start address must align on block boundary */ if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); return -EINVAL; } /* Length must align on block boundary */ if (instr->len & ((1 << this->phys_erase_shift) - 1)) { DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); return -EINVAL; } /* Do not allow erase past end of device */ if ((instr->len + instr->addr) > mtd->size) { DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); return -EINVAL; } instr->fail_addr = 0xffffffff; /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_ERASING); /* Shift to get first page */ page = (int) (instr->addr >> this->page_shift); chipnr = (int) (instr->addr >> this->chip_shift); /* Calculate pages in each block */ pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); /* Select the NAND device */ this->select_chip(mtd, chipnr); /* Check the WP bit */ /* Check, if it is write protected */ if (nand_check_wp(mtd)) { DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* Loop through the pages */ len = instr->len; instr->state = MTD_ERASING; while (len) { #ifndef NAND_ALLOW_ERASE_ALL /* Check if we have a bad block, we do not erase bad blocks ! */ if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); instr->state = MTD_ERASE_FAILED; goto erase_exit; } #endif /* Invalidate the page cache, if we erase the block which contains the current cached page */ if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) this->pagebuf = -1; this->erase_cmd (mtd, page & this->pagemask); status = this->waitfunc (mtd, this, FL_ERASING); /* See if block erase succeeded */ if (status & 0x01) { DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); instr->state = MTD_ERASE_FAILED; instr->fail_addr = (page << this->page_shift); goto erase_exit; } /* Increment page address and decrement length */ len -= (1 << this->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ if (len && !(page & this->pagemask)) { chipnr++; this->select_chip(mtd, -1); this->select_chip(mtd, chipnr); } } instr->state = MTD_ERASE_DONE; erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Do call back function */ if (!ret) mtd_erase_callback(instr); /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); /* Return more or less happy */ return ret; } /** * nand_sync - [MTD Interface] sync * @mtd: MTD device structure * * Sync is actually a wait for chip ready function */ static void nand_sync (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n"); /* Grab the lock and see if the device is available */ nand_get_device (this, mtd, FL_SYNCING); /* Release it and go back */ nand_release_device (mtd); } /** * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs) { /* Check for invalid offset */ if (ofs > mtd->size) return -EINVAL; return nand_block_checkbad (mtd, ofs, 1, 0); } /** * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs) { struct nand_chip *this = mtd->priv; int ret; if ((ret = nand_block_isbad(mtd, ofs))) { /* If it was bad already, return success and do nothing. */ if (ret > 0) return 0; return ret; } return this->block_markbad(mtd, ofs); } /** * nand_scan - [NAND Interface] Scan for the NAND device * @mtd: MTD device structure * @maxchips: Number of chips to scan for * * This fills out all the not initialized function pointers * with the defaults. * The flash ID is read and the mtd/chip structures are * filled with the appropriate values. Buffers are allocated if * they are not provided by the board driver * */ int nand_scan (struct mtd_info *mtd, int maxchips) { int i, j, nand_maf_id, nand_dev_id, busw; struct nand_chip *this = mtd->priv; /* Get buswidth to select the correct functions */ busw = this->options & NAND_BUSWIDTH_16; /* check for proper chip_delay setup, set 20us if not */ if (!this->chip_delay) this->chip_delay = 30; /* check, if a user supplied command function given */ if (this->cmdfunc == NULL) this->cmdfunc = nand_command; /* check, if a user supplied wait function given */ if (this->waitfunc == NULL) this->waitfunc = nand_wait; if (!this->select_chip) this->select_chip = nand_select_chip; if (!this->write_byte) this->write_byte = busw ? nand_write_byte16 : nand_write_byte; if (!this->read_byte) this->read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!this->write_word) this->write_word = nand_write_word; if (!this->read_word) this->read_word = nand_read_word; if (!this->block_bad) this->block_bad = nand_block_bad; if (!this->block_markbad) this->block_markbad = nand_default_block_markbad; if (!this->write_buf) this->write_buf = busw ? nand_write_buf16 : nand_write_buf; if (!this->read_buf) this->read_buf = busw ? nand_read_buf16 : nand_read_buf; if (!this->verify_buf) this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; if (!this->scan_bbt) this->scan_bbt = nand_default_bbt; /* Select the device */ this->select_chip(mtd, 0); /* Send the command for reading device ID */ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ nand_maf_id = this->read_byte(mtd); nand_dev_id = this->read_byte(mtd); /* Print and store flash device information */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (nand_dev_id != nand_flash_ids[i].id) continue; if (!mtd->name) mtd->name = nand_flash_ids[i].name; this->chipsize = nand_flash_ids[i].chipsize << 20; /* New devices have all the information in additional id bytes */ if (!nand_flash_ids[i].pagesize) { int extid; /* The 3rd id byte contains non relevant data ATM */ extid = this->read_byte(mtd); /* The 4th id byte is the important one */ extid = this->read_byte(mtd); /* Calc pagesize */ mtd->oobblock = 1024 << (extid & 0x3); extid >>= 2; /* Calc oobsize */ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock / 512); extid >>= 2; /* Calc blocksize. Blocksize is multiples of 64KiB */ mtd->erasesize = (64 * 1024) << (extid & 0x03); extid >>= 2; /* Get buswidth information */ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; } else { /* Old devices have this data hardcoded in the * device id table */ mtd->erasesize = nand_flash_ids[i].erasesize; mtd->oobblock = nand_flash_ids[i].pagesize; mtd->oobsize = mtd->oobblock / 32; busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; } /* Check, if buswidth is correct. Hardware drivers should set * this correct ! */ if (busw != (this->options & NAND_BUSWIDTH_16)) { printk (KERN_INFO "NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, nand_manuf_ids[i].name , mtd->name); printk (KERN_WARNING "NAND bus width %d instead %d bit\n", (this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8); this->select_chip(mtd, -1); return 1; } /* Calculate the address shift from the page size */ this->page_shift = ffs(mtd->oobblock) - 1; this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1; this->chip_shift = ffs(this->chipsize) - 1; /* Set the bad block position */ this->badblockpos = mtd->oobblock > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; /* Get chip options, preserve non chip based options */ this->options &= ~NAND_CHIPOPTIONS_MSK; this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; /* Set this as a default. Board drivers can override it, if neccecary */ this->options |= NAND_NO_AUTOINCR; /* Check if this is a not a samsung device. Do not clear the options * for chips which are not having an extended id. */ if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) this->options &= ~NAND_SAMSUNG_LP_OPTIONS; /* Check for AND chips with 4 page planes */ if (this->options & NAND_4PAGE_ARRAY) this->erase_cmd = multi_erase_cmd; else this->erase_cmd = single_erase_cmd; /* Do not replace user supplied command function ! */ if (mtd->oobblock > 512 && this->cmdfunc == nand_command) this->cmdfunc = nand_command_lp; /* Try to identify manufacturer */ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { if (nand_manuf_ids[j].id == nand_maf_id) break; } break; } if (!nand_flash_ids[i].name) { #ifndef CFG_NAND_QUIET_TEST printk (KERN_WARNING "No NAND device found!!!\n"); #endif this->select_chip(mtd, -1); return 1; } for (i=1; i < maxchips; i++) { this->select_chip(mtd, i); /* Send the command for reading device ID */ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ if (nand_maf_id != this->read_byte(mtd) || nand_dev_id != this->read_byte(mtd)) break; } if (i > 1) printk(KERN_INFO "%d NAND chips detected\n", i); /* Allocate buffers, if neccecary */ if (!this->oob_buf) { size_t len; len = mtd->oobsize << (this->phys_erase_shift - this->page_shift); this->oob_buf = kmalloc (len, GFP_KERNEL); if (!this->oob_buf) { printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n"); return -ENOMEM; } this->options |= NAND_OOBBUF_ALLOC; } if (!this->data_buf) { size_t len; len = mtd->oobblock + mtd->oobsize; this->data_buf = kmalloc (len, GFP_KERNEL); if (!this->data_buf) { if (this->options & NAND_OOBBUF_ALLOC) kfree (this->oob_buf); printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n"); return -ENOMEM; } this->options |= NAND_DATABUF_ALLOC; } /* Store the number of chips and calc total size for mtd */ this->numchips = i; mtd->size = i * this->chipsize; /* Convert chipsize to number of pages per chip -1. */ this->pagemask = (this->chipsize >> this->page_shift) - 1; /* Preset the internal oob buffer */ memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); strcpy(nandenv, getenv("nandEcc")); if(!nandenv) { if(mtd->oobsize < 64) { strcpy(nandenv, "1bit"); } else { strcpy(nandenv, "4bit"); } } /* If no default placement scheme is given, select an * appropriate one */ if (!this->autooob) { /* Select the appropriate default oob placement scheme for * placement agnostic filesystems */ switch (mtd->oobsize) { case 8: this->autooob = &nand_oob_8; break; case 16: this->autooob = &nand_oob_16; break; case 64: if(strcmp(nandenv,"4bit") == 0) /* RS ECC */ this->autooob = &nand_oob_64_rs; else this->autooob = &nand_oob_64; break; case 128: if(strcmp(nandenv,"4bit") == 0) /* RS ECC */ this->autooob = &nand_oob_128_rs; else this->autooob = &nand_oob_128; break; case 218: if(strcmp(nandenv,"4bit") == 0) /* RS ECC */ this->autooob = &nand_oob_218_rs; else this->autooob = &nand_oob_218; break; default: printk (KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize); /* BUG(); */ } } /* The number of bytes available for the filesystem to place fs dependend * oob data */ mtd->oobavail = 0; for (i=0; this->autooob->oobfree[i][1]; i++) mtd->oobavail += this->autooob->oobfree[i][1]; /* * check ECC mode, default to software * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize * fallback to software ECC */ this->eccsize = 256; /* set default eccsize */ this->eccbytes = 3; switch (this->eccmode) { case NAND_ECC_HW12_2048: if (mtd->oobblock < 2048) { printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", mtd->oobblock); this->eccmode = NAND_ECC_SOFT; this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; } else this->eccsize = 2048; break; case NAND_ECC_HW3_512: case NAND_ECC_HW6_512: case NAND_ECC_HW8_512: if (mtd->oobblock == 256) { printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n"); this->eccmode = NAND_ECC_SOFT; this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; } else this->eccsize = 512; /* set eccsize to 512 */ break; case NAND_ECC_HW3_256: break; case NAND_ECC_NONE: printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n"); this->eccmode = NAND_ECC_NONE; break; case NAND_ECC_SOFT: /* RS ECC */ if (mtd->oobblock < 2048) { this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; } else //mtd->oobblock >=2048 { if(strcmp(nandenv,"4bit") == 0) { this->calculate_ecc = nand_calculate_ecc_rs; this->correct_data = nand_correct_data_rs; this->eccbytes = 10; this->eccsize = 512; } else { this->calculate_ecc = nand_calculate_ecc; this->correct_data = nand_correct_data; /*this->eccbytes = nand_oob_64.eccbytes;*/ } } break; default: printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode); /* BUG(); */ } /* Check hardware ecc function availability and adjust number of ecc bytes per * calculation step */ switch (this->eccmode) { case NAND_ECC_HW12_2048: this->eccbytes += 4; case NAND_ECC_HW8_512: this->eccbytes += 2; case NAND_ECC_HW6_512: this->eccbytes += 3; case NAND_ECC_HW3_512: case NAND_ECC_HW3_256: if (this->calculate_ecc && this->correct_data && this->enable_hwecc) break; printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n"); /* BUG(); */ } mtd->eccsize = this->eccsize; /* Set the number of read / write steps for one page to ensure ECC generation */ switch (this->eccmode) { case NAND_ECC_HW12_2048: this->eccsteps = mtd->oobblock / 2048; break; case NAND_ECC_HW3_512: case NAND_ECC_HW6_512: case NAND_ECC_HW8_512: this->eccsteps = mtd->oobblock / 512; break; case NAND_ECC_HW3_256: case NAND_ECC_SOFT: /* RS ECC */ if (mtd->oobblock < 2048) this->eccsteps = mtd->oobblock / 256; else { if(strcmp(nandenv,"4bit") == 0) this->eccsteps = mtd->oobblock / 512; else this->eccsteps = mtd->oobblock / 256; } break; case NAND_ECC_NONE: this->eccsteps = 1; break; } strcpy(nandenv, ""); /* XXX U-BOOT XXX */ #if 0 /* Initialize state, waitqueue and spinlock */ this->state = FL_READY; init_waitqueue_head (&this->wq); spin_lock_init (&this->chip_lock); #endif /* De-select the device */ this->select_chip(mtd, -1); /* Invalidate the pagebuffer reference */ this->pagebuf = -1; /* Fill in remaining MTD driver data */ mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; mtd->ecctype = MTD_ECC_SW; mtd->erase = nand_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = nand_read; mtd->write = nand_write; mtd->read_ecc = nand_read_ecc; mtd->write_ecc = nand_write_ecc; mtd->read_oob = nand_read_oob; mtd->write_oob = nand_write_oob; /* XXX U-BOOT XXX */ #if 0 mtd->readv = NULL; mtd->writev = nand_writev; mtd->writev_ecc = nand_writev_ecc; #endif mtd->sync = nand_sync; /* XXX U-BOOT XXX */ #if 0 mtd->lock = NULL; mtd->unlock = NULL; mtd->suspend = NULL; mtd->resume = NULL; #endif mtd->block_isbad = nand_block_isbad; mtd->block_markbad = nand_block_markbad; /* and make the autooob the default one */ memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); /* XXX U-BOOT XXX */ #if 0 mtd->owner = THIS_MODULE; #endif /* Build bad block table */ return this->scan_bbt (mtd); } /** * nand_release - [NAND Interface] Free resources held by the NAND device * @mtd: MTD device structure */ void nand_release (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; #ifdef CONFIG_MTD_PARTITIONS /* Deregister partitions */ del_mtd_partitions (mtd); #endif /* Deregister the device */ /* XXX U-BOOT XXX */ #if 0 del_mtd_device (mtd); #endif /* Free bad block table memory, if allocated */ if (this->bbt) kfree (this->bbt); /* Buffer allocated by nand_scan ? */ if (this->options & NAND_OOBBUF_ALLOC) kfree (this->oob_buf); /* Buffer allocated by nand_scan ? */ if (this->options & NAND_DATABUF_ALLOC) kfree (this->data_buf); } #endif