/* * drivers/mtd/nand_bbt.c * * Overview: * Bad block table support for the NAND driver * * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * * $Id: nand_bbt.c,v 1.1.1.1 2008/12/15 11:39:21 wokes Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Description: * * When nand_scan_bbt is called, then it tries to find the bad block table * depending on the options in the bbt descriptor(s). If a bbt is found * then the contents are read and the memory based bbt is created. If a * mirrored bbt is selected then the mirror is searched too and the * versions are compared. If the mirror has a greater version number * than the mirror bbt is used to build the memory based bbt. * If the tables are not versioned, then we "or" the bad block information. * If one of the bbt's is out of date or does not exist it is (re)created. * If no bbt exists at all then the device is scanned for factory marked * good / bad blocks and the bad block tables are created. * * For manufacturer created bbts like the one found on M-SYS DOC devices * the bbt is searched and read but never created * * The autogenerated bad block table is located in the last good blocks * of the device. The table is mirrored, so it can be updated eventually. * The table is marked in the oob area with an ident pattern and a version * number which indicates which of both tables is more up to date. * * The table uses 2 bits per block * 11b: block is good * 00b: block is factory marked bad * 01b, 10b: block is marked bad due to wear * * The memory bad block table uses the following scheme: * 00b: block is good * 01b: block is marked bad due to wear * 10b: block is reserved (to protect the bbt area) * 11b: block is factory marked bad * * Multichip devices like DOC store the bad block info per floor. * * Following assumptions are made: * - bbts start at a page boundary, if autolocated on a block boundary * - the space neccecary for a bbt in FLASH does not exceed a block boundary * */ #include #if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) #include #include #include #include #include /** * check_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @len: the length of buffer to search * @paglen: the pagelength * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block * tables and good / bad block identifiers. * If the SCAN_EMPTY option is set then check, if all bytes except the * pattern area contain 0xff * */ static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { int i, end; uint8_t *p = buf; end = paglen + td->offs; if (td->options & NAND_BBT_SCANEMPTY) { for (i = 0; i < end; i++) { if (p[i] != 0xff) return -1; } } p += end; /* Compare the pattern */ for (i = 0; i < td->len; i++) { if (p[i] != td->pattern[i]) return -1; } p += td->len; end += td->len; if (td->options & NAND_BBT_SCANEMPTY) { for (i = end; i < len; i++) { if (*p++ != 0xff) return -1; } } return 0; } /** * read_bbt - [GENERIC] Read the bad block table starting from page * @mtd: MTD device structure * @buf: temporary buffer * @page: the starting page * @num: the number of bbt descriptors to read * @bits: number of bits per block * @offs: offset in the memory table * @reserved_block_code: Pattern to identify reserved blocks * * Read the bad block table starting from page. * */ static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, int bits, int offs, int reserved_block_code) { int res, i, j, act = 0; struct nand_chip *this = mtd->priv; size_t retlen, len, totlen; loff_t from; uint8_t msk = (uint8_t) ((1 << bits) - 1); totlen = (num * bits) >> 3; from = ((loff_t)page) << this->page_shift; while (totlen) { len = min (totlen, (size_t) (1 << this->bbt_erase_shift)); res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob); if (res < 0) { if (retlen != len) { printk (KERN_INFO "nand_bbt: Error reading bad block table\n"); return res; } printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); } /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; for (j = 0; j < 8; j += bits, act += 2) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n", ((offs << 2) + (act >> 1)) << this->bbt_erase_shift); this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); continue; } /* Leave it for now, if its matured we can move this * message to MTD_DEBUG_LEVEL0 */ printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n", ((offs << 2) + (act >> 1)) << this->bbt_erase_shift); /* Factory marked bad or worn out ? */ if (tmp == 0) this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); else this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); } } totlen -= len; from += len; } return 0; } /** * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @chip: read the table for a specific chip, -1 read all chips. * Applies only if NAND_BBT_PERCHIP option is set * * Read the bad block table for all chips starting at a given page * We assume that the bbt bits are in consecutive order. */ static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) { struct nand_chip *this = mtd->priv; int res = 0, i; int bits; bits = td->options & NAND_BBT_NRBITS_MSK; if (td->options & NAND_BBT_PERCHIP) { int offs = 0; for (i = 0; i < this->numchips; i++) { if (chip == -1 || chip == i) res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code); if (res) return res; offs += this->chipsize >> (this->bbt_erase_shift + 2); } } else { res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code); if (res) return res; } return 0; } /** * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Read the bad block table(s) for all chips starting at a given page * We assume that the bbt bits are in consecutive order. * */ static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { struct nand_chip *this = mtd->priv; /* Read the primary version, if available */ if (td->options & NAND_BBT_VERSION) { nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); td->version[0] = buf[mtd->oobblock + td->veroffs]; printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); } /* Read the mirror version, if available */ if (md && (md->options & NAND_BBT_VERSION)) { nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); md->version[0] = buf[mtd->oobblock + md->veroffs]; printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); } return 1; } /** * create_bbt - [GENERIC] Create a bad block table by scanning the device * @mtd: MTD device structure * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips. * Applies only if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device * for the given good/bad block identify pattern */ static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { struct nand_chip *this = mtd->priv; int i, j, numblocks, len, scanlen; int startblock; loff_t from; size_t readlen, ooblen; if (bd->options & NAND_BBT_SCANALLPAGES) len = 1 << (this->bbt_erase_shift - this->page_shift); else { if (bd->options & NAND_BBT_SCAN2NDPAGE) len = 2; else len = 1; } scanlen = mtd->oobblock + mtd->oobsize; readlen = len * mtd->oobblock; ooblen = len * mtd->oobsize; if (chip == -1) { /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it * makes shifting and masking less painful */ numblocks = mtd->size >> (this->bbt_erase_shift - 1); startblock = 0; from = 0; } else { if (chip >= this->numchips) { printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", chip + 1, this->numchips); return; } numblocks = this->chipsize >> (this->bbt_erase_shift - 1); startblock = chip * numblocks; numblocks += startblock; from = startblock << (this->bbt_erase_shift - 1); } for (i = startblock; i < numblocks;) { nand_read_raw (mtd, buf, from, readlen, ooblen); for (j = 0; j < len; j++) { if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); break; } } i += 2; from += (1 << this->bbt_erase_shift); } } /** * search_bbt - [GENERIC] scan the device for a specific bad block table * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * * Read the bad block table by searching for a given ident pattern. * Search is preformed either from the beginning up or from the end of * the device downwards. The search starts always at the start of a * block. * If the option NAND_BBT_PERCHIP is given, each chip is searched * for a bbt, which contains the bad block information of this chip. * This is neccecary to provide support for certain DOC devices. * * The bbt ident pattern resides in the oob area of the first page * in a block. */ static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, chips; int bits, startblock, block, dir; int scanlen = mtd->oobblock + mtd->oobsize; int bbtblocks; /* Search direction top -> down ? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = (mtd->size >> this->bbt_erase_shift) -1; dir = -1; } else { startblock = 0; dir = 1; } /* Do we have a bbt per chip ? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; bbtblocks = this->chipsize >> this->bbt_erase_shift; startblock &= bbtblocks - 1; } else { chips = 1; bbtblocks = mtd->size >> this->bbt_erase_shift; } /* Number of bits for each erase block in the bbt */ bits = td->options & NAND_BBT_NRBITS_MSK; for (i = 0; i < chips; i++) { /* Reset version information */ td->version[i] = 0; td->pages[i] = -1; /* Scan the maximum number of blocks */ for (block = 0; block < td->maxblocks; block++) { int actblock = startblock + dir * block; /* Read first page */ nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); if (!check_pattern(buf, scanlen, mtd->oobblock, td)) { td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift); if (td->options & NAND_BBT_VERSION) { td->version[i] = buf[mtd->oobblock + td->veroffs]; } break; } } startblock += this->chipsize >> this->bbt_erase_shift; } /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) printk (KERN_WARNING "Bad block table not found for chip %d\n", i); else printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]); } return 0; } /** * search_read_bbts - [GENERIC] scan the device for bad block table(s) * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Search and read the bad block table(s) */ static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { /* Search the primary table */ search_bbt (mtd, buf, td); /* Search the mirror table */ if (md) search_bbt (mtd, buf, md); /* Force result check */ return 1; } /** * write_bbt - [GENERIC] (Re)write the bad block table * * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * @chipsel: selector for a specific chip, -1 for all * * (Re)write the bad block table * */ static int write_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) { struct nand_chip *this = mtd->priv; struct nand_oobinfo oobinfo; struct erase_info einfo; int i, j, res, chip = 0; int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; int nrchips, bbtoffs, pageoffs; uint8_t msk[4]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; loff_t to; if (!rcode) rcode = 0xff; /* Write bad block table per chip rather than per device ? */ if (td->options & NAND_BBT_PERCHIP) { numblocks = (int) (this->chipsize >> this->bbt_erase_shift); /* Full device write or specific chip ? */ if (chipsel == -1) { nrchips = this->numchips; } else { nrchips = chipsel + 1; chip = chipsel; } } else { numblocks = (int) (mtd->size >> this->bbt_erase_shift); nrchips = 1; } /* Loop through the chips */ for (; chip < nrchips; chip++) { /* There was already a version of the table, reuse the page * This applies for absolute placement too, as we have the * page nr. in td->pages. */ if (td->pages[chip] != -1) { page = td->pages[chip]; goto write; } /* Automatic placement of the bad block table */ /* Search direction top -> down ? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; } else { startblock = chip * numblocks; dir = 1; } for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { case 0x01: case 0x03: continue; } page = block << (this->bbt_erase_shift - this->page_shift); /* Check, if the block is used by the mirror table */ if (!md || md->pages[chip] != page) goto write; } printk (KERN_ERR "No space left to write bad block table\n"); return -ENOSPC; write: /* Set up shift count and masks for the flash table */ bits = td->options & NAND_BBT_NRBITS_MSK; switch (bits) { case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break; case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break; case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break; case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break; default: return -EINVAL; } bbtoffs = chip * (numblocks >> 2); to = ((loff_t) page) << this->page_shift; memcpy (&oobinfo, this->autooob, sizeof(oobinfo)); oobinfo.useecc = MTD_NANDECC_PLACEONLY; /* Must we save the block contents ? */ if (td->options & NAND_BBT_SAVECONTENT) { /* Make it block aligned */ to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); len = 1 << this->bbt_erase_shift; res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); if (res < 0) { if (retlen != len) { printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n"); return res; } printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n"); } /* Calc the byte offset in the buffer */ pageoffs = page - (int)(to >> this->page_shift); offs = pageoffs << this->page_shift; /* Preset the bbt area with 0xff */ memset (&buf[offs], 0xff, (size_t)(numblocks >> sft)); /* Preset the bbt's oob area with 0xff */ memset (&buf[len + pageoffs * mtd->oobsize], 0xff, ((len >> this->page_shift) - pageoffs) * mtd->oobsize); if (td->options & NAND_BBT_VERSION) { buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip]; } } else { /* Calc length */ len = (size_t) (numblocks >> sft); /* Make it page aligned ! */ len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1); /* Preset the buffer with 0xff */ memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize); offs = 0; /* Pattern is located in oob area of first page */ memcpy (&buf[len + td->offs], td->pattern, td->len); if (td->options & NAND_BBT_VERSION) { buf[len + td->veroffs] = td->version[chip]; } } /* walk through the memory table */ for (i = 0; i < numblocks; ) { uint8_t dat; dat = this->bbt[bbtoffs + (i >> 2)]; for (j = 0; j < 4; j++ , i++) { int sftcnt = (i << (3 - sft)) & sftmsk; /* Do not store the reserved bbt blocks ! */ buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); dat >>= 2; } } memset (&einfo, 0, sizeof (einfo)); einfo.mtd = mtd; einfo.addr = (unsigned long) to; einfo.len = 1 << this->bbt_erase_shift; res = nand_erase_nand (mtd, &einfo, 1); if (res < 0) { printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res); return res; } res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); if (res < 0) { printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res); return res; } printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", (unsigned int) to, td->version[chip]); /* Mark it as used */ td->pages[chip] = page; } return 0; } /** * nand_memory_bbt - [GENERIC] create a memory based bad block table * @mtd: MTD device structure * @bd: descriptor for the good/bad block search pattern * * The function creates a memory based bbt by scanning the device * for manufacturer / software marked good / bad blocks */ static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; /* Ensure that we only scan for the pattern and nothing else */ bd->options = 0; create_bbt (mtd, this->data_buf, bd, -1); return 0; } /** * check_create - [GENERIC] create and write bbt(s) if neccecary * @mtd: MTD device structure * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * * The function checks the results of the previous call to read_bbt * and creates / updates the bbt(s) if neccecary * Creation is neccecary if no bbt was found for the chip/device * Update is neccecary if one of the tables is missing or the * version nr. of one table is less than the other */ static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) { int i, chips, writeops, chipsel, res; struct nand_chip *this = mtd->priv; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; struct nand_bbt_descr *rd, *rd2; /* Do we have a bbt per chip ? */ if (td->options & NAND_BBT_PERCHIP) chips = this->numchips; else chips = 1; for (i = 0; i < chips; i++) { writeops = 0; rd = NULL; rd2 = NULL; /* Per chip or per device ? */ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; /* Mirrored table avilable ? */ if (md) { if (td->pages[i] == -1 && md->pages[i] == -1) { writeops = 0x03; goto create; } if (td->pages[i] == -1) { rd = md; td->version[i] = md->version[i]; writeops = 1; goto writecheck; } if (md->pages[i] == -1) { rd = td; md->version[i] = td->version[i]; writeops = 2; goto writecheck; } if (td->version[i] == md->version[i]) { rd = td; if (!(td->options & NAND_BBT_VERSION)) rd2 = md; goto writecheck; } if (((int8_t) (td->version[i] - md->version[i])) > 0) { rd = td; md->version[i] = td->version[i]; writeops = 2; } else { rd = md; td->version[i] = md->version[i]; writeops = 1; } goto writecheck; } else { if (td->pages[i] == -1) { writeops = 0x01; goto create; } rd = td; goto writecheck; } create: /* Create the bad block table by scanning the device ? */ if (!(td->options & NAND_BBT_CREATE)) continue; /* Create the table in memory by scanning the chip(s) */ create_bbt (mtd, buf, bd, chipsel); td->version[i] = 1; if (md) md->version[i] = 1; writecheck: /* read back first ? */ if (rd) read_abs_bbt (mtd, buf, rd, chipsel); /* If they weren't versioned, read both. */ if (rd2) read_abs_bbt (mtd, buf, rd2, chipsel); /* Write the bad block table to the device ? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { res = write_bbt (mtd, buf, td, md, chipsel); if (res < 0) return res; } /* Write the mirror bad block table to the device ? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { res = write_bbt (mtd, buf, md, td, chipsel); if (res < 0) return res; } } return 0; } /** * mark_bbt_regions - [GENERIC] mark the bad block table regions * @mtd: MTD device structure * @td: bad block table descriptor * * The bad block table regions are marked as "bad" to prevent * accidental erasures / writes. The regions are identified by * the mark 0x02. */ static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; uint8_t oldval, newval; /* Do we have a bbt per chip ? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); } else { chips = 1; nrblocks = (int)(mtd->size >> this->bbt_erase_shift); } for (i = 0; i < chips; i++) { if ((td->options & NAND_BBT_ABSPAGE) || !(td->options & NAND_BBT_WRITE)) { if (td->pages[i] == -1) continue; block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); block <<= 1; oldval = this->bbt[(block >> 3)]; newval = oldval | (0x2 << (block & 0x06)); this->bbt[(block >> 3)] = newval; if ((oldval != newval) && td->reserved_block_code) nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1)); continue; } update = 0; if (td->options & NAND_BBT_LASTBLOCK) block = ((i + 1) * nrblocks) - td->maxblocks; else block = i * nrblocks; block <<= 1; for (j = 0; j < td->maxblocks; j++) { oldval = this->bbt[(block >> 3)]; newval = oldval | (0x2 << (block & 0x06)); this->bbt[(block >> 3)] = newval; if (oldval != newval) update = 1; block += 2; } /* If we want reserved blocks to be recorded to flash, and some new ones have been marked, then we need to update the stored bbts. This should only happen once. */ if (update && td->reserved_block_code) nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1)); } } /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) * @mtd: MTD device structure * @bd: descriptor for the good/bad block search pattern * * The function checks, if a bad block table(s) is/are already * available. If not it scans the device for manufacturer * marked good / bad blocks and writes the bad block table(s) to * the selected place. * * The bad block table memory is allocated here. It must be freed * by calling the nand_free_bbt function. * */ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; int len, res = 0; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; len = mtd->size >> (this->bbt_erase_shift + 2); /* Allocate memory (2bit per block) */ this->bbt = kmalloc (len, GFP_KERNEL); if (!this->bbt) { printk (KERN_ERR "nand_scan_bbt: Out of memory\n"); return -ENOMEM; } /* Clear the memory bad block table */ memset (this->bbt, 0x00, len); /* If no primary table decriptor is given, scan the device * to build a memory based bad block table */ if (!td) return nand_memory_bbt(mtd, bd); /* Allocate a temporary buffer for one eraseblock incl. oob */ len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = kmalloc (len, GFP_KERNEL); if (!buf) { printk (KERN_ERR "nand_bbt: Out of memory\n"); kfree (this->bbt); this->bbt = NULL; return -ENOMEM; } /* Is the bbt at a given page ? */ if (td->options & NAND_BBT_ABSPAGE) { res = read_abs_bbts (mtd, buf, td, md); } else { /* Search the bad block table using a pattern in oob */ res = search_read_bbts (mtd, buf, td, md); } if (res) res = check_create (mtd, buf, bd); /* Prevent the bbt regions from erasing / writing */ mark_bbt_region (mtd, td); if (md) mark_bbt_region (mtd, md); kfree (buf); return res; } /** * nand_update_bbt - [NAND Interface] update bad block table(s) * @mtd: MTD device structure * @offs: the offset of the newly marked block * * The function updates the bad block table(s) */ int nand_update_bbt (struct mtd_info *mtd, loff_t offs) { struct nand_chip *this = mtd->priv; int len, res = 0, writeops = 0; int chip, chipsel; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; if (!this->bbt || !td) return -EINVAL; len = mtd->size >> (this->bbt_erase_shift + 2); /* Allocate a temporary buffer for one eraseblock incl. oob */ len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = kmalloc (len, GFP_KERNEL); if (!buf) { printk (KERN_ERR "nand_update_bbt: Out of memory\n"); return -ENOMEM; } writeops = md != NULL ? 0x03 : 0x01; /* Do we have a bbt per chip ? */ if (td->options & NAND_BBT_PERCHIP) { chip = (int) (offs >> this->chip_shift); chipsel = chip; } else { chip = 0; chipsel = -1; } td->version[chip]++; if (md) md->version[chip]++; /* Write the bad block table to the device ? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { res = write_bbt (mtd, buf, td, md, chipsel); if (res < 0) goto out; } /* Write the mirror bad block table to the device ? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { res = write_bbt (mtd, buf, md, td, chipsel); } out: kfree (buf); return res; } /* Define some generic bad / good block scan pattern which are used * while scanning a device for factory marked good / bad blocks * * The memory based patterns just */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; static struct nand_bbt_descr smallpage_memorybased = { .options = 0, .offs = 5, .len = 1, .pattern = scan_ff_pattern }; static struct nand_bbt_descr largepage_memorybased = { .options = 0, .offs = 0, .len = 2, .pattern = scan_ff_pattern }; static struct nand_bbt_descr smallpage_flashbased = { .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, .offs = 5, .len = 1, .pattern = scan_ff_pattern }; static struct nand_bbt_descr largepage_flashbased = { .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, .offs = 0, .len = 2, .pattern = scan_ff_pattern }; static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; static struct nand_bbt_descr agand_flashbased = { .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, .offs = 0x20, .len = 6, .pattern = scan_agand_pattern }; /* Generic flash bbt decriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = mirror_pattern }; /** * nand_default_bbt - [NAND Interface] Select a default bad block table for the device * @mtd: MTD device structure * * This function selects the default bad block table * support for the device and calls the nand_scan_bbt function * */ int nand_default_bbt (struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; /* Default for AG-AND. We must use a flash based * bad block table as the devices have factory marked * _good_ blocks. Erasing those blocks leads to loss * of the good / bad information, so we _must_ store * this information in a good / bad table during * startup */ if (this->options & NAND_IS_AND) { /* Use the default pattern descriptors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } this->options |= NAND_USE_FLASH_BBT; return nand_scan_bbt (mtd, &agand_flashbased); } /* Is a flash based bad block table requested ? */ if (this->options & NAND_USE_FLASH_BBT) { /* Use the default pattern descriptors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_flashbased : &smallpage_flashbased; } } else { this->bbt_td = NULL; this->bbt_md = NULL; if (!this->badblock_pattern) { this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_memorybased : &smallpage_memorybased; } } return nand_scan_bbt (mtd, this->badblock_pattern); } /** * nand_isbad_bbt - [NAND Interface] Check if a block is bad * @mtd: MTD device structure * @offs: offset in the device * @allowbbt: allow access to bad block table region * */ int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt) { struct nand_chip *this = mtd->priv; int block; uint8_t res; /* Get block number * 2 */ block = (int) (offs >> (this->bbt_erase_shift - 1)); res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", (unsigned int)offs, res, block >> 1); switch ((int)res) { case 0x00: return 0; case 0x01: return 1; case 0x02: return allowbbt ? 0 : 1; } return 1; } #endif