/* * This file contains an ECC algorithm from Toshiba that detects and * corrects 1 bit errors in a 256 byte block of data. * * drivers/mtd/nand/nand_ecc.c * * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) * Toshiba America Electronics Components, Inc. * * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $ * * This file is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 or (at your option) any * later version. * * This file is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this file; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * As a special exception, if other files instantiate templates or use * macros or inline functions from these files, or you compile these * files and link them with other works to produce a work based on these * files, these files do not by themselves cause the resulting work to be * covered by the GNU General Public License. However the source code for * these files must still be made available in accordance with section (3) * of the GNU General Public License. * * This exception does not invalidate any other reasons why a work based on * this file might be covered by the GNU General Public License. */ #include #if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) #include #include #define mm 10 /* RS code over GF(2**mm) - the size in bits of a symbol*/ #define nn 1023 /* nn=2^mm -1 length of codeword */ #define tt 4 /* number of errors that can be corrected */ #define kk 1015 /* kk = number of information symbols kk = nn-2*tt */ static char rs_initialized = 0; //typedef unsigned int gf; typedef u_short tgf; /* data type of Galois Functions */ /* Primitive polynomials - irriducibile polynomial [ 1+x^3+x^10 ]*/ short pp[mm+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; /* index->polynomial form conversion table */ tgf alpha_to[nn + 1]; /* Polynomial->index form conversion table */ tgf index_of[nn + 1]; /* Generator polynomial g(x) = 2*tt with roots @, @^2, .. ,@^(2*tt) */ tgf Gg[nn - kk + 1]; #define minimum(a,b) ((a) < (b) ? (a) : (b)) #define BLANK(a,n) {\ short ci;\ for(ci=0; ci<(n); ci++)\ (a)[ci] = 0;\ } #define COPY(a,b,n) {\ short ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define COPYDOWN(a,b,n) {\ short ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } /* generate GF(2^m) from the irreducible polynomial p(X) in p[0]..p[mm] lookup tables: index->polynomial form alpha_to[] contains j=alpha^i; polynomial form -> index form index_of[j=alpha^i] = i alpha=2 is the primitive element of GF(2^m) */ void generate_gf(void) { register int i, mask; mask = 1; alpha_to[mm] = 0; for (i = 0; i < mm; i++) { alpha_to[i] = mask; index_of[alpha_to[i]] = i; if (pp[i] != 0) alpha_to[mm] ^= mask; mask <<= 1; } index_of[alpha_to[mm]] = mm; mask >>= 1; for (i = mm + 1; i < nn; i++) { if (alpha_to[i - 1] >= mask) alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i - 1] ^ mask) << 1); else alpha_to[i] = alpha_to[i - 1] << 1; index_of[alpha_to[i]] = i; } index_of[0] = nn; alpha_to[nn] = 0; } /* * Obtain the generator polynomial of the tt-error correcting, * length nn = (2^mm -1) * Reed Solomon code from the product of (X + @^i), i=1..2*tt */ void gen_poly(void) { register int i, j; Gg[0] = alpha_to[1]; /* primitive element*/ Gg[1] = 1; /* g(x) = (X+@^1) initially */ for (i = 2; i <= nn - kk; i++) { Gg[i] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@^i + x) */ for (j = i - 1; j > 0; j--) if (Gg[j] != 0) Gg[j] = Gg[j - 1] ^ alpha_to[((index_of[Gg[j]]) + i)%nn]; else Gg[j] = Gg[j - 1]; Gg[0] = alpha_to[((index_of[Gg[0]]) + i) % nn]; } /* convert Gg[] to index form for quicker encoding */ for (i = 0; i <= nn - kk; i++) Gg[i] = index_of[Gg[i]]; } /* * take the string of symbols in data[i], i=0..(k-1) and encode * systematically to produce nn-kk parity symbols in bb[0]..bb[nn-kk-1] data[] * is input and bb[] is output in polynomial form. Encoding is done by using * a feedback shift register with appropriate connections specified by the * elements of Gg[], which was generated above. Codeword is c(X) = * data(X)*X**(nn-kk)+ b(X) */ char encode_rs(dtype data[kk], dtype bb[nn-kk]) { register int i, j; tgf feedback; BLANK(bb,nn-kk); for (i = kk - 1; i >= 0; i--) { if(data[i] > nn) return -1; /* Illegal symbol */ feedback = index_of[data[i] ^ bb[nn - kk - 1]]; if (feedback != nn) { /* feedback term is non-zero */ for (j = nn - kk - 1; j > 0; j--) if (Gg[j] != nn) bb[j] = bb[j - 1] ^ alpha_to[(Gg[j] + feedback)%nn]; else bb[j] = bb[j - 1]; bb[0] = alpha_to[(Gg[0] + feedback)%nn]; } else { for (j = nn - kk - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; } } return 0; } /* assume we have received bits grouped into mm-bit symbols in data[i], i=0..(nn-1), We first compute the 2*tt syndromes, then we use the Berlekamp iteration to find the error location polynomial elp[i]. If the degree of the elp is >tt, we cannot correct all the errors and hence just put out the information symbols uncorrected. If the degree of elp is <=tt, we get the roots, hence the inverse roots, the error location numbers. If the number of errors located does not equal the degree of the elp, we have more than tt errors and cannot correct them. Otherwise, we then solve for the error value at the error location and correct the error.The procedure is that found in Lin and Costello.*/ int decode_rs(dtype data[nn]) { int deg_lambda, el, deg_omega; int i, j, r; tgf q,tmp,num1,num2,den,discr_r; tgf recd[nn]; tgf lambda[nn-kk + 1], s[nn-kk + 1]; /* Err+Eras Locator poly * and syndrome poly */ tgf b[nn-kk + 1], t[nn-kk + 1], omega[nn-kk + 1]; tgf root[nn-kk], reg[nn-kk + 1], loc[nn-kk]; int syn_error, count; /* data[] is in polynomial form, copy and convert to index form */ for (i = nn-1; i >= 0; i--){ if(data[i] > nn) return -1; /* Illegal symbol */ recd[i] = index_of[data[i]]; } /* first form the syndromes; i.e., evaluate recd(x) at roots of g(x) * namely @**(1+i), i = 0, ... ,(nn-kk-1) */ syn_error = 0; for (i = 1; i <= nn-kk; i++) { tmp = 0; for (j = 0; j < nn; j++) if (recd[j] != nn) /* recd[j] in index form */ tmp ^= alpha_to[(recd[j] + (1+i-1)*j)%nn]; syn_error |= tmp; /* set flag if non-zero syndrome => * error */ /* store syndrome in index form */ s[i] = index_of[tmp]; } if (!syn_error) { /* * if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ return 0; } BLANK(&lambda[1],nn-kk); lambda[0] = 1; for(i=0;i 0; j--) if (reg[j] != nn) { //reg[j] = modnn(reg[j] + j); reg[j] = (reg[j] + j)%nn; q ^= alpha_to[reg[j]]; } if (!q) { /* store root (index-form) and error location number */ root[count] = i; loc[count] = nn - i; count++; } } #ifdef DEBUG /* printf("\n Final error positions:\t"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); */ #endif if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ return -1; } /* * Compute err evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(nn-kk)). in index form. Also find deg(omega). */ deg_omega = 0; for (i = 0; i < nn-kk;i++){ tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(;j >= 0; j--){ if ((s[i + 1 - j] != nn) && (lambda[j] != nn)) //tmp ^= alpha_to[modnn(s[i + 1 - j] + lambda[j])]; tmp ^= alpha_to[(s[i + 1 - j] + lambda[j])%nn]; } if(tmp != 0) deg_omega = i; omega[i] = index_of[tmp]; } omega[nn-kk] = nn; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(1-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != nn) //num1 ^= alpha_to[modnn(omega[i] + i * root[j])]; num1 ^= alpha_to[(omega[i] + i * root[j])%nn]; } //num2 = alpha_to[modnn(root[j] * (1 - 1) + nn)]; num2 = alpha_to[(root[j] * (1 - 1) + nn)%nn]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = minimum(deg_lambda,nn-kk-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != nn) //den ^= alpha_to[modnn(lambda[i+1] + i * root[j])]; den ^= alpha_to[(lambda[i+1] + i * root[j])%nn]; } if (den == 0) { #ifdef DEBUG printf("\n ERROR: denominator = 0\n"); #endif return -1; } /* Apply error to data */ if (num1 != 0) { //data[loc[j]] ^= alpha_to[modnn(index_of[num1] + index_of[num2] + nn - index_of[den])]; data[loc[j]] ^= alpha_to[(index_of[num1] + index_of[num2] + nn - index_of[den])%nn]; } } return count; } /** * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block * @mtd: MTD block structure * @dat: raw data * @ecc_code: buffer for ECC */ int nand_calculate_ecc_rs(struct mtd_info *mtd, const u_char *data, u_char *ecc_code) { int i; u_short rsdata[nn]; /* Generate Tables in first run */ if (!rs_initialized) { generate_gf(); gen_poly(); rs_initialized = 1; } for(i=512; i> 8) | ((rsdata[0x3F7+1]) << 2); *(ecc_code+2) = ((rsdata[0x3F7+1]) >> 6) | ((rsdata[0x3F7+2]) << 4); *(ecc_code+3) = ((rsdata[0x3F7+2]) >> 4) | ((rsdata[0x3F7+3]) << 6); *(ecc_code+4) = ((rsdata[0x3F7+3]) >> 2); *(ecc_code+5) = (unsigned char) rsdata[kk+4]; *(ecc_code+6) = ((rsdata[0x3F7+4]) >> 8) | ((rsdata[0x3F7+1+4]) << 2); *(ecc_code+7) = ((rsdata[0x3F7+1+4]) >> 6) | ((rsdata[0x3F7+2+4]) << 4); *(ecc_code+8) = ((rsdata[0x3F7+2+4]) >> 4) | ((rsdata[0x3F7+3+4]) << 6); *(ecc_code+9) = ((rsdata[0x3F7+3+4]) >> 2); return 0; } /** * nand_correct_data - [NAND Interface] Detect and correct bit error(s) * @mtd: MTD block structure * @dat: raw data read from the chip * @store_ecc: ECC from the chip * @calc_ecc: the ECC calculated from raw data * * Detect and correct a 1 bit error for 256 byte block */ int nand_correct_data_rs(struct mtd_info *mtd, u_char *data, u_char *store_ecc, u_char *calc_ecc) { int ret,i; u_short rsdata[nn]; /* Generate Tables in first run */ if (!rs_initialized) { generate_gf(); gen_poly(); rs_initialized = 1; } /* is decode needed ? */ if ( (*(u16*)store_ecc == *(u16*)calc_ecc) && (*(u16*)(store_ecc + 2) == *(u16*)(calc_ecc + 2)) && (*(u16*)(store_ecc + 4) == *(u16*)(calc_ecc + 4)) && (*(u16*)(store_ecc + 6) == *(u16*)(calc_ecc + 6)) && (*(u16*)(store_ecc + 8) == *(u16*)(calc_ecc + 8))) { return 0; } /* did we read an erased page ? */ for(i = 0; i < 512 ;i += 4) { if(*(u32*)(data+i) != 0xFFFFFFFF) { goto correct; } } /* page was erased, return gracefully */ return 0; correct: for(i=512; i>2); rsdata[kk+2] = ( (*(store_ecc+3) & 0x3F) <<4) | (*(store_ecc+2)>>4); rsdata[kk+3] = (*(store_ecc+4) <<2) | (*(store_ecc+3)>>6); rsdata[kk+4] = ( (*(store_ecc+1+5) & 0x03) <<8) | (*(store_ecc+5)); rsdata[kk+5] = ( (*(store_ecc+2+5) & 0x0F) <<6) | (*(store_ecc+1+5)>>2); rsdata[kk+6] = ( (*(store_ecc+3+5) & 0x3F) <<4) | (*(store_ecc+2+5)>>4); rsdata[kk+7] = (*(store_ecc+4+5) <<2) | (*(store_ecc+3+5)>>6); ret = decode_rs(rsdata); /* Check for excessive errors */ if ((ret > tt) || (ret < 0)) return -1; /* Copy corrected data */ for (i=0; i<512; i++) data[i] = (unsigned char) rsdata[i]; return 0; } #endif /* CONFIG_COMMANDS & CFG_CMD_NAND */