/* * drivers/nand/nand_util.c * * Copyright (C) 2006 by Weiss-Electronic GmbH. * All rights reserved. * * @author: Guido Classen * @descr: NAND Flash support * @references: borrowed heavily from Linux mtd-utils code: * flash_eraseall.c by Arcom Control System Ltd * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) * and Thomas Gleixner (tglx@linutronix.de) * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * */ #include #if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) #include #include #include #include #include #include typedef struct erase_info erase_info_t; typedef struct mtd_info mtd_info_t; /* support only for native endian JFFS2 */ #define cpu_to_je16(x) (x) #define cpu_to_je32(x) (x) /*****************************************************************************/ static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip) { return 0; } /** * nand_erase_opts: - erase NAND flash with support for various options * (jffs2 formating) * * @param meminfo NAND device to erase * @param opts options, @see struct nand_erase_options * @return 0 in case of success * * This code is ported from flash_eraseall.c from Linux mtd utils by * Arcom Control System Ltd. */ int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts) { struct jffs2_unknown_node cleanmarker; int clmpos = 0; int clmlen = 8; erase_info_t erase; ulong erase_length; int isNAND; int bbtest = 1; int result; int percent_complete = -1; int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL; const char *mtd_device = meminfo->name; memset(&erase, 0, sizeof(erase)); erase.mtd = meminfo; erase.len = meminfo->erasesize; erase.addr = opts->offset; erase_length = opts->length; isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0; if (opts->jffs2) { cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); if (isNAND) { struct nand_oobinfo *oobinfo = &meminfo->oobinfo; /* check for autoplacement */ if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) { /* get the position of the free bytes */ if (!oobinfo->oobfree[0][1]) { printf(" Eeep. Autoplacement selected " "and no empty space in oob\n"); return -1; } clmpos = oobinfo->oobfree[0][0]; clmlen = oobinfo->oobfree[0][1]; if (clmlen > 8) clmlen = 8; } else { /* legacy mode */ switch (meminfo->oobsize) { case 8: clmpos = 6; clmlen = 2; break; case 16: clmpos = 8; clmlen = 8; break; case 64: clmpos = 16; clmlen = 8; break; } } cleanmarker.totlen = cpu_to_je32(8); } else { cleanmarker.totlen = cpu_to_je32(sizeof(struct jffs2_unknown_node)); } cleanmarker.hdr_crc = cpu_to_je32( crc32_no_comp(0, (unsigned char *) &cleanmarker, sizeof(struct jffs2_unknown_node) - 4)); } /* scrub option allows to erase badblock. To prevent internal * check from erase() method, set block check method to dummy * and disable bad block table while erasing. */ if (opts->scrub) { struct nand_chip *priv_nand = meminfo->priv; nand_block_bad_old = priv_nand->block_bad; priv_nand->block_bad = nand_block_bad_scrub; /* we don't need the bad block table anymore... * after scrub, there are no bad blocks left! */ if (priv_nand->bbt) { kfree(priv_nand->bbt); } priv_nand->bbt = NULL; } if (erase_length < meminfo->erasesize) { printf("Warning: Erase size 0x%08lx smaller than one " \ "erase block 0x%08x\n",erase_length, meminfo->erasesize); printf(" Erasing 0x%08x instead\n", meminfo->erasesize); erase_length = meminfo->erasesize; } for (; erase.addr < opts->offset + erase_length; erase.addr += meminfo->erasesize) { WATCHDOG_RESET (); if (!opts->scrub && bbtest) { int ret = meminfo->block_isbad(meminfo, erase.addr); if (ret > 0) { if (!opts->quiet) printf("\rSkipping bad block at " "0x%08x " " \n", erase.addr); continue; } else if (ret < 0) { printf("\n%s: MTD get bad block failed: %d\n", mtd_device, ret); return -1; } } result = meminfo->erase(meminfo, &erase); if (result != 0) { printf("\n%s: MTD Erase failure: %d\n", mtd_device, result); continue; } /* format for JFFS2 ? */ if (opts->jffs2) { /* write cleanmarker */ if (isNAND) { size_t written; result = meminfo->write_oob(meminfo, erase.addr + clmpos, clmlen, &written, (unsigned char *) &cleanmarker); if (result != 0) { printf("\n%s: MTD writeoob failure: %d\n", mtd_device, result); continue; } } else { printf("\n%s: this erase routine only supports" " NAND devices!\n", mtd_device); } } if (!opts->quiet) { unsigned long long n =(unsigned long long) (erase.addr + meminfo->erasesize - opts->offset) * 100; int percent; do_div(n, erase_length); percent = (int)n; /* output progress message only at whole percent * steps to reduce the number of messages printed * on (slow) serial consoles */ if (percent != percent_complete) { percent_complete = percent; printf("\rErasing at 0x%x -- %3d%% complete.", erase.addr, percent); if (opts->jffs2 && result == 0) printf(" Cleanmarker written at 0x%x.", erase.addr); } } } if (!opts->quiet) printf("\n"); if (nand_block_bad_old) { struct nand_chip *priv_nand = meminfo->priv; priv_nand->block_bad = nand_block_bad_old; priv_nand->scan_bbt(meminfo); } return 0; } #define MAX_PAGE_SIZE 4096 #define MAX_OOB_SIZE 218 /* * buffer array used for writing data */ static unsigned char data_buf[MAX_PAGE_SIZE]; static unsigned char oob_buf[MAX_OOB_SIZE]; /* OOB layouts to pass into the kernel as default */ static struct nand_oobinfo none_oobinfo = { .useecc = MTD_NANDECC_OFF, }; static struct nand_oobinfo jffs2_oobinfo = { .useecc = MTD_NANDECC_PLACE, .eccbytes = 6, .eccpos = { 0, 1, 2, 3, 6, 7 } }; static struct nand_oobinfo yaffs_oobinfo = { .useecc = MTD_NANDECC_PLACE, .eccbytes = 6, .eccpos = { 8, 9, 10, 13, 14, 15} }; static struct nand_oobinfo autoplace_oobinfo = { .useecc = MTD_NANDECC_AUTOPLACE }; /** * nand_write_opts: - write image to NAND flash with support for various options * * @param meminfo NAND device to erase * @param opts write options (@see nand_write_options) * @return 0 in case of success * * This code is ported from nandwrite.c from Linux mtd utils by * Steven J. Hill and Thomas Gleixner. */ int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts) { int imglen = 0; int pagelen; int baderaseblock; int blockstart = -1; loff_t offs; int readlen; int oobinfochanged = 0; int percent_complete = -1; struct nand_oobinfo old_oobinfo; ulong mtdoffset = opts->offset; ulong erasesize_blockalign; u_char *buffer = opts->buffer; size_t written; int result; if (opts->pad && opts->writeoob) { printf("Can't pad when oob data is present.\n"); return -1; } /* set erasesize to specified number of blocks - to match * jffs2 (virtual) block size */ if (opts->blockalign == 0) { erasesize_blockalign = meminfo->erasesize; } else { erasesize_blockalign = meminfo->erasesize * opts->blockalign; } /* make sure device page sizes are valid */ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512) && !(meminfo->oobsize == 8 && meminfo->oobblock == 256) && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) { printf("Unknown flash (not normal NAND)\n"); return -1; } /* read the current oob info */ memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo)); /* write without ecc? */ if (opts->noecc) { memcpy(&meminfo->oobinfo, &none_oobinfo, sizeof(meminfo->oobinfo)); oobinfochanged = 1; } /* autoplace ECC? */ if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) { memcpy(&meminfo->oobinfo, &autoplace_oobinfo, sizeof(meminfo->oobinfo)); oobinfochanged = 1; } /* force OOB layout for jffs2 or yaffs? */ if (opts->forcejffs2 || opts->forceyaffs) { struct nand_oobinfo *oobsel = opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo; if (meminfo->oobsize == 8) { if (opts->forceyaffs) { printf("YAFSS cannot operate on " "256 Byte page size\n"); goto restoreoob; } /* Adjust number of ecc bytes */ jffs2_oobinfo.eccbytes = 3; } memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo)); } /* get image length */ imglen = opts->length; pagelen = meminfo->oobblock + ((opts->writeoob != 0) ? meminfo->oobsize : 0); /* check, if file is pagealigned */ if ((!opts->pad) && ((imglen % pagelen) != 0)) { printf("Input block length is not page aligned\n"); goto restoreoob; } /* check, if length fits into device */ if (((imglen / pagelen) * meminfo->oobblock) > (meminfo->size - opts->offset)) { printf("Image %d bytes, NAND page %d bytes, " "OOB area %u bytes, device size %u bytes\n", imglen, pagelen, meminfo->oobblock, meminfo->size); printf("Input block does not fit into device\n"); goto restoreoob; } if (!opts->quiet) printf("\n"); /* get data from input and write to the device */ while (imglen && (mtdoffset < meminfo->size)) { WATCHDOG_RESET (); /* * new eraseblock, check for bad block(s). Stay in the * loop to be sure if the offset changes because of * a bad block, that the next block that will be * written to is also checked. Thus avoiding errors if * the block(s) after the skipped block(s) is also bad * (number of blocks depending on the blockalign */ while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) { blockstart = mtdoffset & (~erasesize_blockalign+1); offs = blockstart; baderaseblock = 0; /* check all the blocks in an erase block for * bad blocks */ do { int ret = meminfo->block_isbad(meminfo, offs); if (ret < 0) { printf("Bad block check failed\n"); goto restoreoob; } if (ret == 1) { baderaseblock = 1; if (!opts->quiet) printf("\rBad block at 0x%lx " "in erase block from " "0x%x will be skipped\n", (long) offs, blockstart); } if (baderaseblock) { mtdoffset = blockstart + erasesize_blockalign; } offs += erasesize_blockalign / opts->blockalign; } while (offs < blockstart + erasesize_blockalign); } readlen = meminfo->oobblock; if (opts->pad && (imglen < readlen)) { readlen = imglen; memset(data_buf + readlen, 0xff, meminfo->oobblock - readlen); } /* read page data from input memory buffer */ memcpy(data_buf, buffer, readlen); buffer += readlen; if (opts->writeoob) { /* read OOB data from input memory block, exit * on failure */ memcpy(oob_buf, buffer, meminfo->oobsize); buffer += meminfo->oobsize; /* write OOB data first, as ecc will be placed * in there*/ result = meminfo->write_oob(meminfo, mtdoffset, meminfo->oobsize, &written, (unsigned char *) &oob_buf); if (result != 0) { printf("\nMTD writeoob failure: %d\n", result); goto restoreoob; } imglen -= meminfo->oobsize; } /* write out the page data */ result = meminfo->write(meminfo, mtdoffset, meminfo->oobblock, &written, (unsigned char *) &data_buf); if (result != 0) { printf("writing NAND page at offset 0x%lx failed\n", mtdoffset); goto restoreoob; } imglen -= readlen; if (!opts->quiet) { unsigned long long n = (unsigned long long) (opts->length-imglen) * 100; int percent; do_div(n, opts->length); percent = (int)n; /* output progress message only at whole percent * steps to reduce the number of messages printed * on (slow) serial consoles */ if (percent != percent_complete) { printf("\rWriting data at 0x%lx " "-- %3d%% complete.", mtdoffset, percent); percent_complete = percent; } } mtdoffset += meminfo->oobblock; } if (!opts->quiet) printf("\n"); restoreoob: if (oobinfochanged) { memcpy(&meminfo->oobinfo, &old_oobinfo, sizeof(meminfo->oobinfo)); } if (imglen > 0) { printf("Data did not fit into device, due to bad blocks\n"); return -1; } /* return happy */ return 0; } /** * nand_read_opts: - read image from NAND flash with support for various options * * @param meminfo NAND device to erase * @param opts read options (@see struct nand_read_options) * @return 0 in case of success * */ int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts) { int imglen = opts->length; int pagelen; int baderaseblock; int blockstart = -1; int percent_complete = -1; loff_t offs; size_t readlen; ulong mtdoffset = opts->offset; u_char *buffer = opts->buffer; int result; /* make sure device page sizes are valid */ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512) && !(meminfo->oobsize == 8 && meminfo->oobblock == 256) && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) { printf("Unknown flash (not normal NAND)\n"); return -1; } pagelen = meminfo->oobblock + ((opts->readoob != 0) ? meminfo->oobsize : 0); /* check, if length is not larger than device */ if (((imglen / pagelen) * meminfo->oobblock) > (meminfo->size - opts->offset)) { printf("Image %d bytes, NAND page %d bytes, " "OOB area %u bytes, device size %u bytes\n", imglen, pagelen, meminfo->oobblock, meminfo->size); printf("Input block is larger than device\n"); return -1; } if (!opts->quiet) printf("\n"); /* get data from input and write to the device */ while (imglen && (mtdoffset < meminfo->size)) { WATCHDOG_RESET (); /* * new eraseblock, check for bad block(s). Stay in the * loop to be sure if the offset changes because of * a bad block, that the next block that will be * written to is also checked. Thus avoiding errors if * the block(s) after the skipped block(s) is also bad * (number of blocks depending on the blockalign */ while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) { blockstart = mtdoffset & (~meminfo->erasesize+1); offs = blockstart; baderaseblock = 0; /* check all the blocks in an erase block for * bad blocks */ do { int ret = meminfo->block_isbad(meminfo, offs); if (ret < 0) { printf("Bad block check failed\n"); return -1; } if (ret == 1) { baderaseblock = 1; if (!opts->quiet) printf("\rBad block at 0x%lx " "in erase block from " "0x%x will be skipped\n", (long) offs, blockstart); } if (baderaseblock) { mtdoffset = blockstart + meminfo->erasesize; } offs += meminfo->erasesize; } while (offs < blockstart + meminfo->erasesize); } /* read page data to memory buffer */ result = meminfo->read(meminfo, mtdoffset, meminfo->oobblock, &readlen, (unsigned char *) &data_buf); if (result != 0) { printf("reading NAND page at offset 0x%lx failed\n", mtdoffset); return -1; } if (imglen < readlen) { readlen = imglen; } memcpy(buffer, data_buf, readlen); buffer += readlen; imglen -= readlen; if (opts->readoob) { result = meminfo->read_oob(meminfo, mtdoffset, meminfo->oobsize, &readlen, (unsigned char *) &oob_buf); if (result != 0) { printf("\nMTD readoob failure: %d\n", result); return -1; } if (imglen < readlen) { readlen = imglen; } memcpy(buffer, oob_buf, readlen); buffer += readlen; imglen -= readlen; } if (!opts->quiet) { unsigned long long n = (unsigned long long) (opts->length-imglen) * 100; int percent; do_div(n, opts->length); percent = (int)n; /* output progress message only at whole percent * steps to reduce the number of messages printed * on (slow) serial consoles */ if (percent != percent_complete) { if (!opts->quiet) printf("\rReading data from 0x%lx " "-- %3d%% complete.", mtdoffset, percent); percent_complete = percent; } } mtdoffset += meminfo->oobblock; } if (!opts->quiet) printf("\n"); if (imglen > 0) { printf("Could not read entire image due to bad blocks\n"); return -1; } /* return happy */ return 0; } /****************************************************************************** * Support for locking / unlocking operations of some NAND devices *****************************************************************************/ #define NAND_CMD_LOCK 0x2a #define NAND_CMD_LOCK_TIGHT 0x2c #define NAND_CMD_UNLOCK1 0x23 #define NAND_CMD_UNLOCK2 0x24 #define NAND_CMD_LOCK_STATUS 0x7a /** * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT * state * * @param meminfo nand mtd instance * @param tight bring device in lock tight mode * * @return 0 on success, -1 in case of error * * The lock / lock-tight command only applies to the whole chip. To get some * parts of the chip lock and others unlocked use the following sequence: * * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) * - Call nand_unlock() once for each consecutive area to be unlocked * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) * * If the device is in lock-tight state software can't change the * current active lock/unlock state of all pages. nand_lock() / nand_unlock() * calls will fail. It is only posible to leave lock-tight state by * an hardware signal (low pulse on _WP pin) or by power down. */ int nand_lock(nand_info_t *meminfo, int tight) { int ret = 0; int status; struct nand_chip *this = meminfo->priv; /* select the NAND device */ this->select_chip(meminfo, 0); this->cmdfunc(meminfo, (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), -1, -1); /* call wait ready function */ status = this->waitfunc(meminfo, this, FL_WRITING); /* see if device thinks it succeeded */ if (status & 0x01) { ret = -1; } /* de-select the NAND device */ this->select_chip(meminfo, -1); return ret; } /** * nand_get_lock_status: - query current lock state from one page of NAND * flash * * @param meminfo nand mtd instance * @param offset page address to query (muss be page aligned!) * * @return -1 in case of error * >0 lock status: * bitfield with the following combinations: * NAND_LOCK_STATUS_TIGHT: page in tight state * NAND_LOCK_STATUS_LOCK: page locked * NAND_LOCK_STATUS_UNLOCK: page unlocked * */ int nand_get_lock_status(nand_info_t *meminfo, ulong offset) { int ret = 0; int chipnr; int page; struct nand_chip *this = meminfo->priv; /* select the NAND device */ chipnr = (int)(offset >> this->chip_shift); this->select_chip(meminfo, chipnr); if ((offset & (meminfo->oobblock - 1)) != 0) { printf ("nand_get_lock_status: " "Start address must be beginning of " "nand page!\n"); ret = -1; goto out; } /* check the Lock Status */ page = (int)(offset >> this->page_shift); this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask); ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT | NAND_LOCK_STATUS_LOCK | NAND_LOCK_STATUS_UNLOCK); out: /* de-select the NAND device */ this->select_chip(meminfo, -1); return ret; } /** * nand_unlock: - Unlock area of NAND pages * only one consecutive area can be unlocked at one time! * * @param meminfo nand mtd instance * @param start start byte address * @param length number of bytes to unlock (must be a multiple of * page size nand->oobblock) * * @return 0 on success, -1 in case of error */ int nand_unlock(nand_info_t *meminfo, ulong start, ulong length) { int ret = 0; int chipnr; int status; int page; struct nand_chip *this = meminfo->priv; printf ("nand_unlock: start: %08x, length: %d!\n", (int)start, (int)length); /* select the NAND device */ chipnr = (int)(start >> this->chip_shift); this->select_chip(meminfo, chipnr); /* check the WP bit */ this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1); if ((this->read_byte(meminfo) & 0x80) == 0) { printf ("nand_unlock: Device is write protected!\n"); ret = -1; goto out; } if ((start & (meminfo->oobblock - 1)) != 0) { printf ("nand_unlock: Start address must be beginning of " "nand page!\n"); ret = -1; goto out; } if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) { printf ("nand_unlock: Length must be a multiple of nand page " "size!\n"); ret = -1; goto out; } /* submit address of first page to unlock */ page = (int)(start >> this->page_shift); this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask); /* submit ADDRESS of LAST page to unlock */ page += (int)(length >> this->page_shift) - 1; this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask); /* call wait ready function */ status = this->waitfunc(meminfo, this, FL_WRITING); /* see if device thinks it succeeded */ if (status & 0x01) { /* there was an error */ ret = -1; goto out; } out: /* de-select the NAND device */ this->select_chip(meminfo, -1); return ret; } #endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) */