1
0
uboot-1.1.4-kirkwood/drivers/eepro100.c
2024-01-09 13:43:28 +01:00

952 lines
24 KiB
C

/*
* (C) Copyright 2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <asm/io.h>
#include <pci.h>
#include <miiphy.h>
#undef DEBUG
#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
defined(CONFIG_EEPRO100)
/* Ethernet chip registers.
*/
#define SCBStatus 0 /* Rx/Command Unit Status *Word* */
#define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
#define SCBCmd 2 /* Rx/Command Unit Command *Word* */
#define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
#define SCBPointer 4 /* General purpose pointer. */
#define SCBPort 8 /* Misc. commands and operands. */
#define SCBflash 12 /* Flash memory control. */
#define SCBeeprom 14 /* EEPROM memory control. */
#define SCBCtrlMDI 16 /* MDI interface control. */
#define SCBEarlyRx 20 /* Early receive byte count. */
#define SCBGenControl 28 /* 82559 General Control Register */
#define SCBGenStatus 29 /* 82559 General Status register */
/* 82559 SCB status word defnitions
*/
#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
#define SCB_STATUS_FR 0x4000 /* frame received */
#define SCB_STATUS_CNA 0x2000 /* CU left active state */
#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
#define SCB_INTACK_MASK 0xFD00 /* all the above */
#define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
#define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
/* System control block commands
*/
/* CU Commands */
#define CU_NOP 0x0000
#define CU_START 0x0010
#define CU_RESUME 0x0020
#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
/* RUC Commands */
#define RUC_NOP 0x0000
#define RUC_START 0x0001
#define RUC_RESUME 0x0002
#define RUC_ABORT 0x0004
#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
#define RUC_RESUMENR 0x0007
#define CU_CMD_MASK 0x00f0
#define RU_CMD_MASK 0x0007
#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
#define CU_STATUS_MASK 0x00C0
#define RU_STATUS_MASK 0x003C
#define RU_STATUS_IDLE (0<<2)
#define RU_STATUS_SUS (1<<2)
#define RU_STATUS_NORES (2<<2)
#define RU_STATUS_READY (4<<2)
#define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
/* 82559 Port interface commands.
*/
#define I82559_RESET 0x00000000 /* Software reset */
#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
#define I82559_SELECTIVE_RESET 0x00000002
#define I82559_DUMP 0x00000003
#define I82559_DUMP_WAKEUP 0x00000007
/* 82559 Eeprom interface.
*/
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
#define EE_CS 0x02 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define EE_ENB (0x4800 | EE_CS)
#define EE_CMD_BITS 3
#define EE_DATA_BITS 16
/* The EEPROM commands include the alway-set leading bit.
*/
#define EE_EWENB_CMD (4 << addr_len)
#define EE_WRITE_CMD (5 << addr_len)
#define EE_READ_CMD (6 << addr_len)
#define EE_ERASE_CMD (7 << addr_len)
/* Receive frame descriptors.
*/
struct RxFD {
volatile u16 status;
volatile u16 control;
volatile u32 link; /* struct RxFD * */
volatile u32 rx_buf_addr; /* void * */
volatile u32 count;
volatile u8 data[PKTSIZE_ALIGN];
};
#define RFD_STATUS_C 0x8000 /* completion of received frame */
#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define RFD_COUNT_MASK 0x3fff
#define RFD_COUNT_F 0x4000
#define RFD_COUNT_EOF 0x8000
#define RFD_RX_CRC 0x0800 /* crc error */
#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
#define RFD_RX_SHORT 0x0080 /* short frame error */
#define RFD_RX_LENGTH 0x0020
#define RFD_RX_ERROR 0x0010 /* receive error */
#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
#define RFD_RX_TCO 0x0001 /* TCO indication */
/* Transmit frame descriptors
*/
struct TxFD { /* Transmit frame descriptor set. */
volatile u16 status;
volatile u16 command;
volatile u32 link; /* void * */
volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
volatile s32 count;
volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
volatile s32 tx_buf_size0; /* Length of Tx frame. */
volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
volatile s32 tx_buf_size1; /* Length of Tx frame. */
};
#define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
#define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
#define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
#define TxCB_CMD_S 0x4000 /* suspend on completion */
#define TxCB_CMD_EL 0x8000 /* last command block in CBL */
#define TxCB_COUNT_MASK 0x3fff
#define TxCB_COUNT_EOF 0x8000
/* The Speedo3 Rx and Tx frame/buffer descriptors.
*/
struct descriptor { /* A generic descriptor. */
volatile u16 status;
volatile u16 command;
volatile u32 link; /* struct descriptor * */
unsigned char params[0];
};
#define CFG_CMD_EL 0x8000
#define CFG_CMD_SUSPEND 0x4000
#define CFG_CMD_INT 0x2000
#define CFG_CMD_IAS 0x0001 /* individual address setup */
#define CFG_CMD_CONFIGURE 0x0002 /* configure */
#define CFG_STATUS_C 0x8000
#define CFG_STATUS_OK 0x2000
/* Misc.
*/
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#define TOUT_LOOP 1000000
#define ETH_ALEN 6
static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
static int rx_next; /* RX descriptor ring pointer */
static int tx_next; /* TX descriptor ring pointer */
static int tx_threshold;
/*
* The parameters for a CmdConfigure operation.
* There are so many options that it would be difficult to document
* each bit. We mostly use the default or recommended settings.
*/
static const char i82557_config_cmd[] = {
22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
0, 0x2E, 0, 0x60, 0,
0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
0x3f, 0x05,
};
static const char i82558_config_cmd[] = {
22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
0, 0x2E, 0, 0x60, 0x08, 0x88,
0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
0x31, 0x05,
};
static void init_rx_ring (struct eth_device *dev);
static void purge_tx_ring (struct eth_device *dev);
static void read_hw_addr (struct eth_device *dev, bd_t * bis);
static int eepro100_init (struct eth_device *dev, bd_t * bis);
static int eepro100_send (struct eth_device *dev, volatile void *packet,
int length);
static int eepro100_recv (struct eth_device *dev);
static void eepro100_halt (struct eth_device *dev);
#if defined(CONFIG_E500) || (defined(CONFIG_MARVELL) && defined(__ARM__))
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a) (a)
#elif defined(CONFIG_MARVELL) && defined(__MIPS__)
#define bus_to_phys(a) (a | (0xa0000000))
#define phys_to_bus(a) (a & ~(0xa0000000))
#else
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif
static inline int INW (struct eth_device *dev, u_long addr)
{
return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
}
static inline void OUTW (struct eth_device *dev, int command, u_long addr)
{
*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
}
static inline void OUTL (struct eth_device *dev, int command, u_long addr)
{
*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
}
#if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
static inline int INL (struct eth_device *dev, u_long addr)
{
return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
}
static int get_phyreg (struct eth_device *dev, unsigned char addr,
unsigned char reg, unsigned short *value)
{
int cmd;
int timeout = 50;
/* read requested data */
cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL (dev, cmd, SCBCtrlMDI);
do {
udelay(1000);
cmd = INL (dev, SCBCtrlMDI);
} while (!(cmd & (1 << 28)) && (--timeout));
if (timeout == 0)
return -1;
*value = (unsigned short) (cmd & 0xffff);
return 0;
}
static int set_phyreg (struct eth_device *dev, unsigned char addr,
unsigned char reg, unsigned short value)
{
int cmd;
int timeout = 50;
/* write requested data */
cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL (dev, cmd | value, SCBCtrlMDI);
while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
udelay(1000);
if (timeout == 0)
return -1;
return 0;
}
/* Check if given phyaddr is valid, i.e. there is a PHY connected.
* Do this by checking model value field from ID2 register.
*/
static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
{
struct eth_device *dev;
unsigned short value;
unsigned char model;
dev = eth_get_dev_by_name(devname);
if (dev == NULL) {
printf("%s: no such device\n", devname);
return NULL;
}
/* read id2 register */
if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
printf("%s: mii read timeout!\n", devname);
return NULL;
}
/* get model */
model = (unsigned char)((value >> 4) & 0x003f);
if (model == 0) {
printf("%s: no PHY at address %d\n", devname, addr);
return NULL;
}
return dev;
}
static int eepro100_miiphy_read (char *devname, unsigned char addr,
unsigned char reg, unsigned short *value)
{
struct eth_device *dev;
dev = verify_phyaddr(devname, addr);
if (dev == NULL)
return -1;
if (get_phyreg(dev, addr, reg, value) != 0) {
printf("%s: mii read timeout!\n", devname);
return -1;
}
return 0;
}
static int eepro100_miiphy_write (char *devname, unsigned char addr,
unsigned char reg, unsigned short value)
{
struct eth_device *dev;
dev = verify_phyaddr(devname, addr);
if (dev == NULL)
return -1;
if (set_phyreg(dev, addr, reg, value) != 0) {
printf("%s: mii write timeout!\n", devname);
return -1;
}
return 0;
}
#endif /* defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) */
/* Wait for the chip get the command.
*/
static int wait_for_eepro100 (struct eth_device *dev)
{
int i;
for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
if (i >= TOUT_LOOP) {
return 0;
}
}
return 1;
}
static struct pci_device_id supported[] = {
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
{}
};
int eepro100_initialize (bd_t * bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *dev;
u32 iobase, status;
int idx = 0;
while (1) {
/* Find PCI device
*/
if ((devno = pci_find_devices (supported, idx++)) < 0) {
break;
}
pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
iobase &= ~0xf;
#ifdef DEBUG
printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
iobase);
#endif
pci_write_config_dword (devno,
PCI_COMMAND,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Check if I/O accesses and Bus Mastering are enabled.
*/
pci_read_config_dword (devno, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_MEMORY)) {
printf ("Error: Can not enable MEM access.\n");
continue;
}
if (!(status & PCI_COMMAND_MASTER)) {
printf ("Error: Can not enable Bus Mastering.\n");
continue;
}
dev = (struct eth_device *) malloc (sizeof *dev);
sprintf (dev->name, "i82559#%d", card_number);
dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
dev->iobase = bus_to_phys (iobase);
dev->init = eepro100_init;
dev->halt = eepro100_halt;
dev->send = eepro100_send;
dev->recv = eepro100_recv;
eth_register (dev);
#if defined (CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
/* register mii command access routines */
miiphy_register(dev->name,
eepro100_miiphy_read, eepro100_miiphy_write);
#endif
card_number++;
/* Set the latency timer for value.
*/
pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
udelay (10 * 1000);
read_hw_addr (dev, bis);
}
return card_number;
}
static int eepro100_init (struct eth_device *dev, bd_t * bis)
{
int i, status = 0;
int tx_cur;
struct descriptor *ias_cmd, *cfg_cmd;
/* Reset the ethernet controller
*/
OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
udelay (20);
OUTL (dev, I82559_RESET, SCBPort);
udelay (20);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
/* Initialize Rx and Tx rings.
*/
init_rx_ring (dev);
purge_tx_ring (dev);
/* Tell the adapter where the RX ring is located.
*/
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
OUTW (dev, SCB_M | RUC_START, SCBCmd);
/* Send the Configure frame */
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
cfg_cmd->status = 0;
cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
memcpy (cfg_cmd->params, i82558_config_cmd,
sizeof (i82558_config_cmd));
if (!wait_for_eepro100 (dev)) {
printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0;
!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
/* Send the Individual Address Setup frame
*/
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
ias_cmd->status = 0;
ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
memcpy (ias_cmd->params, dev->enetaddr, 6);
/* Tell the adapter where the TX ring is located.
*/
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n",
dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = 1;
Done:
return status;
}
static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
{
int i, status = -1;
int tx_cur;
if (length <= 0) {
printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
tx_cur = tx_next;
tx_next = (tx_next + 1) % NUM_TX_DESC;
tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
TxCB_CMD_SF |
TxCB_CMD_S |
TxCB_CMD_EL );
tx_ring[tx_cur].status = 0;
tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
tx_ring[tx_cur].link =
cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
tx_ring[tx_cur].tx_desc_addr =
cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
tx_ring[tx_cur].tx_buf_addr0 =
cpu_to_le32 (phys_to_bus ((u_long) packet));
tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
if (!wait_for_eepro100 (dev)) {
printf ("%s: Tx error ethernet controller not ready.\n",
dev->name);
goto Done;
}
/* Send the packet.
*/
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = length;
Done:
return status;
}
static int eepro100_recv (struct eth_device *dev)
{
u16 status, stat;
int rx_prev, length = 0;
stat = INW (dev, SCBStatus);
OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
for (;;) {
status = le16_to_cpu (rx_ring[rx_next].status);
if (!(status & RFD_STATUS_C)) {
break;
}
/* Valid frame status.
*/
if ((status & RFD_STATUS_OK)) {
/* A valid frame received.
*/
length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
/* Pass the packet up to the protocol
* layers.
*/
NetReceive (rx_ring[rx_next].data, length);
} else {
/* There was an error.
*/
printf ("RX error status = 0x%08X\n", status);
}
rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
rx_ring[rx_next].status = 0;
rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
rx_ring[rx_prev].control = 0;
/* Update entry information.
*/
rx_next = (rx_next + 1) % NUM_RX_DESC;
}
if (stat & SCB_STATUS_RNR) {
printf ("%s: Receiver is not ready, restart it !\n", dev->name);
/* Reinitialize Rx ring.
*/
init_rx_ring (dev);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not restart ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
OUTW (dev, SCB_M | RUC_START, SCBCmd);
}
Done:
return length;
}
static void eepro100_halt (struct eth_device *dev)
{
/* Reset the ethernet controller
*/
OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
udelay (20);
OUTL (dev, I82559_RESET, SCBPort);
udelay (20);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
Done:
return;
}
/* SROM Read.
*/
static int read_eeprom (struct eth_device *dev, int location, int addr_len)
{
unsigned short retval = 0;
int read_cmd = location | EE_READ_CMD;
int i;
OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
OUTW (dev, EE_ENB, SCBeeprom);
/* Shift the read command bits out. */
for (i = 12; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW (dev, EE_ENB | dataval, SCBeeprom);
udelay (1);
OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay (1);
}
OUTW (dev, EE_ENB, SCBeeprom);
for (i = 15; i >= 0; i--) {
OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
udelay (1);
retval = (retval << 1) |
((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
OUTW (dev, EE_ENB, SCBeeprom);
udelay (1);
}
/* Terminate the EEPROM access. */
OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
return retval;
}
#ifdef CONFIG_EEPRO100_SROM_WRITE
int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
{
unsigned short dataval;
int enable_cmd = 0x3f | EE_EWENB_CMD;
int write_cmd = location | EE_WRITE_CMD;
int i;
unsigned long datalong, tmplong;
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB, SCBeeprom);
/* Shift the enable command bits out. */
for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
{
dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
}
OUTW(dev, EE_ENB, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB, SCBeeprom);
/* Shift the write command bits out. */
for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
{
dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
}
/* Write the data */
datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
for (i = 0; i< EE_DATA_BITS; i++)
{
/* Extract and move data bit to bit DI */
dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
datalong = datalong << 1; /* Adjust significant data bit*/
}
/* Finish up command (toggle CS) */
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1); /* delay for more than 250 ns */
OUTW(dev, EE_ENB, SCBeeprom);
/* Wait for programming ready (D0 = 1) */
tmplong = 10;
do
{
dataval = INW(dev, SCBeeprom);
if (dataval & EE_DATA_READ)
break;
udelay(10000);
}
while (-- tmplong);
if (tmplong == 0)
{
printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
return -1;
}
/* Terminate the EEPROM access. */
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
return 0;
}
#endif
static void init_rx_ring (struct eth_device *dev)
{
int i;
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = 0;
rx_ring[i].control =
(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
rx_ring[i].link =
cpu_to_le32 (phys_to_bus
((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
rx_ring[i].rx_buf_addr = 0xffffffff;
rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
}
rx_next = 0;
}
static void purge_tx_ring (struct eth_device *dev)
{
int i;
tx_next = 0;
tx_threshold = 0x01208000;
for (i = 0; i < NUM_TX_DESC; i++) {
tx_ring[i].status = 0;
tx_ring[i].command = 0;
tx_ring[i].link = 0;
tx_ring[i].tx_desc_addr = 0;
tx_ring[i].count = 0;
tx_ring[i].tx_buf_addr0 = 0;
tx_ring[i].tx_buf_size0 = 0;
tx_ring[i].tx_buf_addr1 = 0;
tx_ring[i].tx_buf_size1 = 0;
}
}
static void read_hw_addr (struct eth_device *dev, bd_t * bis)
{
u16 eeprom[0x40];
u16 sum = 0;
int i, j;
int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
for (j = 0, i = 0; i < 0x40; i++) {
u16 value = read_eeprom (dev, i, addr_len);
eeprom[i] = value;
sum += value;
if (i < 3) {
dev->enetaddr[j++] = value;
dev->enetaddr[j++] = value >> 8;
}
}
if (sum != 0xBABA) {
memset (dev->enetaddr, 0, ETH_ALEN);
#ifdef DEBUG
printf ("%s: Invalid EEPROM checksum %#4.4x, "
"check settings before activating this device!\n",
dev->name, sum);
#endif
}
}
#endif