ispprog/ispprog.c

658 lines
13 KiB
C

/*
* C based avr910 / avr109 ISP Adapter
*
* (c) 2006-2008 by Olaf Rempel
* <razzor at kopf minus tisch dot de>
*
* using ATmega16 @7.3728MHz:
* PB1 = /Reset (to target)
* PB3 = /LED
* PB5 = MOSI (to target)
* PB6 = MISO (to target)
* PB7 = SCK (to target)
* PD3 = reset-in
*
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#define F_CPU 7372800
#define BAUDRATE 115200
/* SPI Clock: F_CPU /4 (1.8432MHz) or /128 (57.6kHz) */
#define SPI_MODE ((1<<SPE) | (1<<MSTR))
//#define SPI_MODE ((1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0))
#define ISP_RESET PORTB1
#define ISP_LED PORTB3
#define ISP_MOSI PORTB5
#define ISP_MISO PORTB6
#define ISP_SCK PORTB7
#define RESET_IN PORTD3
struct {
uint8_t id; /* device id */
uint8_t pagemask; /* bitmask of one flash-page */
uint8_t pollcode; /* value of an empty flash-cell */
} devices[] = {
// { 0x20, 0x00, 0x7F }, /* at90s2313 (no paging, reads 0x7F back) */
{ 0x20, 0x0F, 0xFF }, /* tiny24 (16 words/page) */
{ 0x38, 0x00, 0x7F }, /* at90s8515 (no paging, reads 0x7F back) */
{ 0x43, 0x7F, 0xFF }, /* mega128 (128 words/page) */
{ 0x72, 0x3F, 0xFF }, /* mega32 (64 words/page) */
{ 0x74, 0x3F, 0xFF }, /* mega16 (64 words/page) */
{ 0x76, 0x1F, 0xFF }, /* mega8 (32 words/page) */
{ 0x00, 0x00, 0x00 },
};
#include <util/delay.h>
#define UART_CALC_BAUDRATE(baudRate) (((uint32_t)F_CPU) / (((uint32_t)baudRate)*16) -1)
#define LED_OFF 0x00
#define LED_ON 0x01
#define LED_FAST 0x02
#define LED_SLOW 0x03
#define CMD_PROG_ENABLE_1 0xAC
#define CMD_PROG_ENABLE_2 0x53
#define CMD_CHIP_ERASE_1 0xAC
#define CMD_CHIP_ERASE_2 0x80
#define CMD_POLL_BUSY_1 0xF0 /* not used */
#define CMD_POLL_BUSY_2 0x00 /* not used */
#define CMD_LOAD_EADDR_1 0x4D /* not used */
#define CMD_LOAD_EADDR_2 0x00 /* not used */
#define CMD_LOAD_FLASH_HI 0x48
#define CMD_LOAD_FLASH_LO 0x40
#define CMD_LOAD_EEPROM_PAGE 0xC1 /* not used */
#define CMD_READ_FLASH_LO 0x20
#define CMD_READ_FLASH_HI 0x28
#define CMD_READ_EEPROM 0xA0
#define CMD_READ_LOCK_1 0x58
#define CMD_READ_LOCK_2 0x00
#define CMD_READ_SIG_1 0x30
#define CMD_READ_SIG_2 0x00
#define CMD_READ_FUSE_1 0x50
#define CMD_READ_FUSE_2 0x00
#define CMD_READ_FUSE_H_1 0x58
#define CMD_READ_FUSE_H_2 0x08
#define CMD_READ_FUSE_E_1 0x50
#define CMD_READ_FUSE_E_2 0x08
#define CMD_READ_CAL 0x38 /* not used */
#define CMD_WRITE_FLASH_PAGE 0x4C
#define CMD_WRITE_EEPROM 0xC0
#define CMD_WRITE_EEPROM_PAGE 0xC2 /* not used */
#define CMD_WRITE_LOCK_1 0xAC
#define CMD_WRITE_LOCK_2 0xE0
#define CMD_WRITE_FUSE_1 0xAC
#define CMD_WRITE_FUSE_2 0xA0
#define CMD_WRITE_FUSE_H_1 0xAC /* not used */
#define CMD_WRITE_FUSE_H_2 0xA8 /* not used */
#define CMD_WRITE_FUSE_E_1 0xAC /* not used */
#define CMD_WRITE_FUSE_E_2 0xA4 /* not used */
static uint16_t lastaddr;
static uint8_t lastcmd;
static uint8_t lastval;
static uint8_t pollcode = 0xFF;
/* toggle LED */
ISR(SIG_OUTPUT_COMPARE1A)
{
PORTB ^= (1<<ISP_LED);
}
/* Send one byte to PC */
static void ser_send(uint8_t data)
{
loop_until_bit_is_set(UCSRA, UDRIE);
UDR = data;
}
/* Receive one byte from PC */
static uint8_t ser_recv(void)
{
loop_until_bit_is_set(UCSRA, RXC);
return UDR;
}
/* Check if receiver ready */
static uint8_t ser_recv_ready(void)
{
return bit_is_set(UCSRA, RXC);
}
/* Send one byte to target, and return received one */
static uint8_t spi_rxtx(uint8_t val)
{
SPDR = val;
loop_until_bit_is_set(SPSR, SPIF);
return SPDR;
}
/* Set LED mode */
static void led_mode(uint8_t mode)
{
static uint8_t oldmode = LED_OFF;
if (mode == oldmode) {
return;
} else if (mode == LED_ON) {
TCCR1B = 0x00;
PORTB &= ~(1<<ISP_LED);
} else if (mode == LED_OFF) {
TCCR1B = 0x00;
PORTB |= (1<<ISP_LED);
} else if (mode == LED_FAST) {
/* timer1: F_CPU /64, CTC mode via OutputCompare A, 10Hz */
OCR1A = (F_CPU / (64 * 10));
TCCR1B = (1<<WGM12) | (1<<CS11) | (1<<CS10);
} else if (mode == LED_SLOW) {
/* timer1: FCPU /64, CTC mode via OutputCompare A, 4Hz */
OCR1A = (F_CPU / (64 * 4));
TCCR1B = (1<<WGM12) | (1<<CS11) | (1<<CS10);
}
oldmode = mode;
}
/* Control reset and SPI lines */
static void set_reset(uint8_t mode)
{
if (mode) {
/* ISP_SCK, ISP_MOSI and ISP_RESET are inputs */
DDRB &= ~((1<<ISP_SCK) | (1<<ISP_MOSI) | (1<<ISP_RESET));
PORTB |= (1<<ISP_RESET);
} else {
/*ISP_SCK, ISP_MOSI and ISP_RESET are outputs, set ISP_RESET low */
DDRB |= ((1<<ISP_SCK) | (1<<ISP_MOSI) | (1<<ISP_RESET));
PORTB &= ~(1<<ISP_RESET);
}
_delay_ms(25);
_delay_ms(25);
}
/* writes a byte to target flash/eeprom */
static void mem_write(uint8_t cmd, uint16_t addr, uint8_t val)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
spi_rxtx(val);
/* remember values for polling */
lastcmd = cmd;
lastaddr = addr;
lastval = val;
}
/* read a byte from target flash/eeprom */
static uint8_t mem_read(uint8_t cmd, uint16_t addr)
{
spi_rxtx(cmd);
spi_rxtx(addr >> 8);
spi_rxtx(addr & 0xFF);
return spi_rxtx(0x00);
}
/* wait until byte/page is written to target memory */
static void poll(void)
{
uint8_t cmd, val, poll = 0xFF;
if (lastcmd == CMD_WRITE_EEPROM) {
/* check if we can poll */
if (lastval == pollcode || lastval == 0x7F || lastval == 0x80) {
/* wait default time */
_delay_ms(10);
return;
}
cmd = CMD_READ_EEPROM;
} else {
/* check if we can poll */
if (lastval == pollcode) {
/* wait default time */
_delay_ms(10);
return;
}
/* CMD_WRITE_FLASH -> CMD_READ_FLASH */
cmd = (lastcmd & 0x08) | 0x20;
}
/* poll until we get correct value */
do {
val = mem_read(cmd, lastaddr);
} while ((val != lastval) && poll--);
}
int main(void)
{
static uint8_t page_buf[256];
uint16_t addr = 0;
uint8_t device = 0, pagemask = 0;
/* ISP_RESET and ISP_LED are outputs, pullup SlaveSelect */
PORTB = (1<<ISP_RESET) | (1<<ISP_LED) | (1<<PORTB4);
DDRB = (1<<ISP_RESET) | (1<<ISP_LED);
/* Set baud rate */
UBRRH = (UART_CALC_BAUDRATE(BAUDRATE)>>8) & 0xFF;
UBRRL = (UART_CALC_BAUDRATE(BAUDRATE) & 0xFF);
/* enable usart with 8n1 */
UCSRB = (1<<TXEN) | (1<<RXEN);
UCSRC = (1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ0);
/* enable SPI master mode */
SPCR = SPI_MODE;
/* enable timer1 OutputCompare A interrupt (CTC hit) */
TIMSK = (1<<OCIE1A);
sei();
/* disable ISP_RESET */
set_reset(1);
while (1) {
uint8_t pulse = 0;
while (!ser_recv_ready()) {
/* reset the target */
if (PIND & (1<<RESET_IN)) {
if (!pulse) {
led_mode(LED_ON);
set_reset(0);
set_reset(1);
led_mode(LED_OFF);
pulse = 1;
}
} else {
pulse = 0;
}
}
switch (ser_recv()) {
/* Enter programming mode */
case 'P': {
uint8_t sync, count = 0x20;
led_mode(LED_ON);
do {
set_reset(1);
set_reset(0);
spi_rxtx(CMD_PROG_ENABLE_1);
spi_rxtx(CMD_PROG_ENABLE_2);
sync = spi_rxtx(0x00);
spi_rxtx(0x00);
} while (sync != 0x53 && count--);
ser_send('\r');
break;
}
/* Autoincrement address */
case 'a':
ser_send('Y');
break;
/* Set address */
case 'A':
addr = (ser_recv() << 8);
addr |= ser_recv();
ser_send('\r');
break;
/* Write program memory, low byte */
case 'c':
led_mode(LED_FAST);
mem_write(CMD_LOAD_FLASH_LO, addr, ser_recv());
/* poll on byte addressed targets */
if (!pagemask)
poll();
ser_send('\r');
break;
/* Write program memory, high byte */
case 'C':
led_mode(LED_FAST);
mem_write(CMD_LOAD_FLASH_HI, addr, ser_recv());
/* poll on byte addressed targets */
if (!pagemask)
poll();
addr++;
ser_send('\r');
break;
/* Issue Page Write */
case 'm':
led_mode(LED_FAST);
spi_rxtx(CMD_WRITE_FLASH_PAGE);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
ser_send('\r');
break;
/* Read Lock Bits */
case 'r':
ser_send(mem_read(CMD_READ_LOCK_1, CMD_READ_LOCK_2 << 8));
ser_send('\r');
break;
/* Read program memory */
case 'R':
led_mode(LED_SLOW);
ser_send(mem_read(CMD_READ_FLASH_HI, addr));
ser_send(mem_read(CMD_READ_FLASH_LO, addr));
addr++;
break;
/* Read data memory */
case 'd':
led_mode(LED_SLOW);
ser_send(mem_read(CMD_READ_EEPROM, addr));
addr++;
break;
/* Write data memory */
case 'D':
led_mode(LED_FAST);
mem_write(CMD_WRITE_EEPROM, addr, ser_recv());
poll();
addr++;
ser_send('\r');
break;
/* Chip erase */
case 'e':
spi_rxtx(CMD_CHIP_ERASE_1);
spi_rxtx(CMD_CHIP_ERASE_2);
spi_rxtx(0x00);
spi_rxtx(0x00);
_delay_ms(25);
ser_send('\r');
break;
/* Write lock bits */
case 'l': {
uint8_t val = ser_recv();
spi_rxtx(CMD_WRITE_LOCK_1);
spi_rxtx(CMD_WRITE_LOCK_2);
spi_rxtx(0x00);
spi_rxtx(val);
_delay_ms(25);
ser_send('\r');
break;
}
/* Read fusebits */
case 'F':
ser_send(mem_read(CMD_READ_FUSE_1, CMD_READ_FUSE_2 << 8));
break;
/* Read high fusebits */
case 'N':
ser_send(mem_read(CMD_READ_FUSE_H_1, CMD_READ_FUSE_H_2 << 8));
break;
/* Read extended fusebits */
case 'Q':
ser_send(mem_read(CMD_READ_FUSE_E_1, CMD_READ_FUSE_E_2 << 8));
break;
/* Leave programming mode */
case 'L':
/* Exit Bootloader */
case 'E':
set_reset(1);
led_mode(LED_OFF);
ser_send('\r');
break;
/* Select device type */
case 'T': {
uint8_t val, i = 0;
val = ser_recv();
do {
if (val == devices[i].id) {
device = val;
pagemask = devices[i].pagemask;
pollcode = devices[i].pollcode;
break;
}
} while (devices[i++].id);
ser_send('\r');
break;
}
/* Read signature bytes */
case 's': {
uint8_t i = 2;
do {
ser_send(mem_read(CMD_READ_SIG_1, (CMD_READ_SIG_2 << 8) | i));
} while (i--);
break;
}
/* Return supported device codes */
case 't': {
uint8_t val, i = 0;
do {
val = devices[i++].id;
ser_send(val);
} while (val);
break;
}
/* Return software identifier */
case 'S':
ser_send('A');
ser_send('V');
ser_send('R');
ser_send('-');
ser_send('I');
ser_send('S');
ser_send('P');
break;
/* Return software version */
case 'V':
ser_send('3');
ser_send('8');
break;
/* Return hardware version */
case 'v':
ser_send('1');
ser_send('2');
break;
/* Return programmer type */
case 'p':
ser_send('S');
break;
/* Set LED */
case 'x':
ser_recv();
led_mode(LED_ON);
break;
/* Clear LED */
case 'y':
ser_recv();
led_mode(LED_OFF);
break;
/* Report Block write Mode */
case 'b':
ser_send('Y');
ser_send(sizeof(page_buf) >> 8);
ser_send(sizeof(page_buf) & 0xFF);
break;
/* Block Write */
case 'B': {
uint16_t size, i;
uint8_t type;
led_mode(LED_FAST);
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
for (i = 0; i < size; i++)
page_buf[i] = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
mem_write(CMD_LOAD_FLASH_LO, addr, page_buf[i]);
mem_write(CMD_LOAD_FLASH_HI, addr, page_buf[i+1]);
addr++;
/* page write on page-boundry */
if ((addr & pagemask) == 0x00) {
spi_rxtx(CMD_WRITE_FLASH_PAGE);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
}
}
/* last page */
if (size != sizeof(page_buf)) {
spi_rxtx(CMD_WRITE_FLASH_PAGE);
spi_rxtx(lastaddr >> 8);
spi_rxtx(lastaddr & 0xFF);
spi_rxtx(0x00);
poll();
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
mem_write(CMD_WRITE_EEPROM, addr, page_buf[i]);
poll();
addr++;
}
}
ser_send('\r');
break;
}
/* Block Read */
case 'g': {
uint16_t size, i;
uint8_t type;
led_mode(LED_SLOW);
size = ser_recv() << 8;
size |= ser_recv();
type = ser_recv();
if (type == 'F') {
for (i = 0; i < size; i += 2) {
ser_send(mem_read(CMD_READ_FLASH_LO, addr));
ser_send(mem_read(CMD_READ_FLASH_HI, addr));
addr++;
}
} else if (type == 'E') {
for (i = 0; i < size; i++) {
ser_send(mem_read(CMD_READ_EEPROM, addr));
addr++;
}
}
break;
}
/* Write fusebits */
case 'f': {
uint8_t val = ser_recv();
spi_rxtx(CMD_WRITE_FUSE_1);
spi_rxtx(CMD_WRITE_FUSE_2);
spi_rxtx(0x00);
spi_rxtx(val);
_delay_ms(25);
ser_send('\r');
break;
}
/* Universial command */
case ':': {
uint8_t val[3];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
ser_send(spi_rxtx(val[2]));
_delay_ms(25);
ser_send('\r');
break;
}
/* New universal command */
case '.': {
uint8_t val[4];
val[0] = ser_recv();
val[1] = ser_recv();
val[2] = ser_recv();
val[3] = ser_recv();
spi_rxtx(val[0]);
spi_rxtx(val[1]);
spi_rxtx(val[2]);
ser_send(spi_rxtx(val[3]));
_delay_ms(25);
ser_send('\r');
break;
}
/* ESC */
case 0x1B:
break;
default:
ser_send('?');
break;
}
}
return 0;
}