1
0
uboot-1.1.4-kirkwood/cpu/mpc8220/fec.c

1001 lines
23 KiB
C
Raw Permalink Normal View History

2024-01-07 23:57:24 +01:00
/*
* (C) Copyright 2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This file is based on mpc4200fec.c,
* (C) Copyright Motorola, Inc., 2000
*/
#include <common.h>
#include <mpc8220.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include "dma.h"
#include "fec.h"
#undef DEBUG
#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
defined(CONFIG_MPC8220_FEC)
#if !(defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII))
#error "CONFIG_MII has to be defined!"
#endif
#ifdef DEBUG
static void tfifo_print (char *devname, mpc8220_fec_priv * fec);
static void rfifo_print (char *devname, mpc8220_fec_priv * fec);
#endif /* DEBUG */
#ifdef DEBUG
static u32 local_crc32 (char *string, unsigned int crc_value, int len);
#endif
typedef struct {
u8 data[1500]; /* actual data */
int length; /* actual length */
int used; /* buffer in use or not */
u8 head[16]; /* MAC header(6 + 6 + 2) + 2(aligned) */
} NBUF;
int fec8220_miiphy_read (char *devname, u8 phyAddr, u8 regAddr, u16 * retVal);
int fec8220_miiphy_write (char *devname, u8 phyAddr, u8 regAddr, u16 data);
/********************************************************************/
#ifdef DEBUG
static void mpc8220_fec_phydump (char *devname)
{
u16 phyStatus, i;
u8 phyAddr = CONFIG_PHY_ADDR;
u8 reg_mask[] = {
#if CONFIG_PHY_TYPE == 0x79c874 /* AMD Am79C874 */
/* regs to print: 0...7, 16...19, 21, 23, 24 */
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
#else
/* regs to print: 0...8, 16...20 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#endif
};
for (i = 0; i < 32; i++) {
if (reg_mask[i]) {
miiphy_read (devname, phyAddr, i, &phyStatus);
printf ("Mii reg %d: 0x%04x\n", i, phyStatus);
}
}
}
#endif
/********************************************************************/
static int mpc8220_fec_rbd_init (mpc8220_fec_priv * fec)
{
int ix;
char *data;
static int once = 0;
for (ix = 0; ix < FEC_RBD_NUM; ix++) {
if (!once) {
data = (char *) malloc (FEC_MAX_PKT_SIZE);
if (data == NULL) {
printf ("RBD INIT FAILED\n");
return -1;
}
fec->rbdBase[ix].dataPointer = (u32) data;
}
fec->rbdBase[ix].status = FEC_RBD_EMPTY;
fec->rbdBase[ix].dataLength = 0;
}
once++;
/*
* have the last RBD to close the ring
*/
fec->rbdBase[ix - 1].status |= FEC_RBD_WRAP;
fec->rbdIndex = 0;
return 0;
}
/********************************************************************/
static void mpc8220_fec_tbd_init (mpc8220_fec_priv * fec)
{
int ix;
for (ix = 0; ix < FEC_TBD_NUM; ix++) {
fec->tbdBase[ix].status = 0;
}
/*
* Have the last TBD to close the ring
*/
fec->tbdBase[ix - 1].status |= FEC_TBD_WRAP;
/*
* Initialize some indices
*/
fec->tbdIndex = 0;
fec->usedTbdIndex = 0;
fec->cleanTbdNum = FEC_TBD_NUM;
}
/********************************************************************/
static void mpc8220_fec_rbd_clean (mpc8220_fec_priv * fec, FEC_RBD * pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if ((fec->rbdIndex) == (FEC_RBD_NUM - 1))
pRbd->status = (FEC_RBD_WRAP | FEC_RBD_EMPTY);
else
pRbd->status = FEC_RBD_EMPTY;
pRbd->dataLength = 0;
/*
* Now, we have an empty RxBD, restart the SmartDMA receive task
*/
DMA_TASK_ENABLE (FEC_RECV_TASK_NO);
/*
* Increment BD count
*/
fec->rbdIndex = (fec->rbdIndex + 1) % FEC_RBD_NUM;
}
/********************************************************************/
static void mpc8220_fec_tbd_scrub (mpc8220_fec_priv * fec)
{
FEC_TBD *pUsedTbd;
#ifdef DEBUG
printf ("tbd_scrub: fec->cleanTbdNum = %d, fec->usedTbdIndex = %d\n",
fec->cleanTbdNum, fec->usedTbdIndex);
#endif
/*
* process all the consumed TBDs
*/
while (fec->cleanTbdNum < FEC_TBD_NUM) {
pUsedTbd = &fec->tbdBase[fec->usedTbdIndex];
if (pUsedTbd->status & FEC_TBD_READY) {
#ifdef DEBUG
printf ("Cannot clean TBD %d, in use\n",
fec->cleanTbdNum);
#endif
return;
}
/*
* clean this buffer descriptor
*/
if (fec->usedTbdIndex == (FEC_TBD_NUM - 1))
pUsedTbd->status = FEC_TBD_WRAP;
else
pUsedTbd->status = 0;
/*
* update some indeces for a correct handling of the TBD ring
*/
fec->cleanTbdNum++;
fec->usedTbdIndex = (fec->usedTbdIndex + 1) % FEC_TBD_NUM;
}
}
/********************************************************************/
static void mpc8220_fec_set_hwaddr (mpc8220_fec_priv * fec, char *mac)
{
u8 currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
int bit; /* loop - counter */
u32 crc = 0xffffffff; /* initial value */
/*
* The algorithm used is the following:
* we loop on each of the six bytes of the provided address,
* and we compute the CRC by left-shifting the previous
* value by one position, so that each bit in the current
* byte of the address may contribute the calculation. If
* the latter and the MSB in the CRC are different, then
* the CRC value so computed is also ex-ored with the
* "polynomium generator". The current byte of the address
* is also shifted right by one bit at each iteration.
* This is because the CRC generatore in hardware is implemented
* as a shift-register with as many ex-ores as the radixes
* in the polynomium. This suggests that we represent the
* polynomiumm itself as a 32-bit constant.
*/
for (byte = 0; byte < 6; byte++) {
currByte = mac[byte];
for (bit = 0; bit < 8; bit++) {
if ((currByte & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
currByte >>= 1;
}
}
crc = crc >> 26;
/*
* Set individual hash table register
*/
if (crc >= 32) {
fec->eth->iaddr1 = (1 << (crc - 32));
fec->eth->iaddr2 = 0;
} else {
fec->eth->iaddr1 = 0;
fec->eth->iaddr2 = (1 << crc);
}
/*
* Set physical address
*/
fec->eth->paddr1 =
(mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3];
fec->eth->paddr2 = (mac[4] << 24) + (mac[5] << 16) + 0x8808;
}
/********************************************************************/
static int mpc8220_fec_init (struct eth_device *dev, bd_t * bis)
{
mpc8220_fec_priv *fec = (mpc8220_fec_priv *) dev->priv;
struct mpc8220_dma *dma = (struct mpc8220_dma *) MMAP_DMA;
const u8 phyAddr = CONFIG_PHY_ADDR; /* Only one PHY */
#ifdef DEBUG
printf ("mpc8220_fec_init... Begin\n");
#endif
/*
* Initialize RxBD/TxBD rings
*/
mpc8220_fec_rbd_init (fec);
mpc8220_fec_tbd_init (fec);
/*
* Set up Pin Muxing for FEC 1
*/
*(vu_long *) MMAP_PCFG = 0;
*(vu_long *) (MMAP_PCFG + 4) = 0;
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
fec->eth->ievent = 0xffffffff;
/*
* Set interrupt mask register
*/
fec->eth->imask = 0x00000000;
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
if (fec->xcv_type == SEVENWIRE) {
/*
* Frame length=1518; 7-wire mode
*/
fec->eth->r_cntrl = 0x05ee0020; /*0x05ee0000;FIXME */
} else {
/*
* Frame length=1518; MII mode;
*/
fec->eth->r_cntrl = 0x05ee0024; /*0x05ee0004;FIXME */
}
fec->eth->x_cntrl = 0x00000000; /* half-duplex, heartbeat disabled */
if (fec->xcv_type != SEVENWIRE) {
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
/* tbd - rtm */
/*fec->eth->mii_speed = (((gd->ipb_clk >> 20) / 5) << 1); */
/* No MII for 7-wire mode */
fec->eth->mii_speed = 0x00000030;
}
/*
* Set Opcode/Pause Duration Register
*/
fec->eth->op_pause = 0x00010020; /*FIXME0xffff0020; */
/*
* Set Rx FIFO alarm and granularity value
*/
fec->eth->rfifo_cntrl = 0x0c000000;
fec->eth->rfifo_alarm = 0x0000030c;
#ifdef DEBUG
if (fec->eth->rfifo_status & 0x00700000) {
printf ("mpc8220_fec_init() RFIFO error\n");
}
#endif
/*
* Set Tx FIFO granularity value
*/
/*fec->eth->tfifo_cntrl = 0x0c000000; */ /*tbd - rtm */
fec->eth->tfifo_cntrl = 0x0e000000;
#ifdef DEBUG
printf ("tfifo_status: 0x%08x\n", fec->eth->tfifo_status);
printf ("tfifo_alarm: 0x%08x\n", fec->eth->tfifo_alarm);
#endif
/*
* Set transmit fifo watermark register(X_WMRK), default = 64
*/
fec->eth->tfifo_alarm = 0x00000080;
fec->eth->x_wmrk = 0x2;
/*
* Set individual address filter for unicast address
* and set physical address registers.
*/
mpc8220_fec_set_hwaddr (fec, (char *)(dev->enetaddr));
/*
* Set multicast address filter
*/
fec->eth->gaddr1 = 0x00000000;
fec->eth->gaddr2 = 0x00000000;
/*
* Turn ON cheater FSM: ????
*/
fec->eth->xmit_fsm = 0x03000000;
#if 1
/*#if defined(CONFIG_MPC5200)*/
/*
* Turn off COMM bus prefetch in the MGT5200 BestComm. It doesn't
* work w/ the current receive task.
*/
dma->PtdCntrl |= 0x00000001;
#endif
/*
* Set priority of different initiators
*/
dma->IPR0 = 7; /* always */
dma->IPR3 = 6; /* Eth RX */
dma->IPR4 = 5; /* Eth Tx */
/*
* Clear SmartDMA task interrupt pending bits
*/
DMA_CLEAR_IEVENT (FEC_RECV_TASK_NO);
/*
* Initialize SmartDMA parameters stored in SRAM
*/
*(int *) FEC_TBD_BASE = (int) fec->tbdBase;
*(int *) FEC_RBD_BASE = (int) fec->rbdBase;
*(int *) FEC_TBD_NEXT = (int) fec->tbdBase;
*(int *) FEC_RBD_NEXT = (int) fec->rbdBase;
if (fec->xcv_type != SEVENWIRE) {
/*
* Initialize PHY(LXT971A):
*
* Generally, on power up, the LXT971A reads its configuration
* pins to check for forced operation, If not cofigured for
* forced operation, it uses auto-negotiation/parallel detection
* to automatically determine line operating conditions.
* If the PHY device on the other side of the link supports
* auto-negotiation, the LXT971A auto-negotiates with it
* using Fast Link Pulse(FLP) Bursts. If the PHY partner does not
* support auto-negotiation, the LXT971A automatically detects
* the presence of either link pulses(10Mbps PHY) or Idle
* symbols(100Mbps) and sets its operating conditions accordingly.
*
* When auto-negotiation is controlled by software, the following
* steps are recommended.
*
* Note:
* The physical address is dependent on hardware configuration.
*
*/
int timeout = 1;
u16 phyStatus;
/*
* Reset PHY, then delay 300ns
*/
miiphy_write (dev->name, phyAddr, 0x0, 0x8000);
udelay (1000);
if (fec->xcv_type == MII10) {
/*
* Force 10Base-T, FDX operation
*/
#ifdef DEBUG
printf ("Forcing 10 Mbps ethernet link... ");
#endif
miiphy_read (dev->name, phyAddr, 0x1, &phyStatus);
/*
miiphy_write(fec, phyAddr, 0x0, 0x0100);
*/
miiphy_write (dev->name, phyAddr, 0x0, 0x0180);
timeout = 20;
do { /* wait for link status to go down */
udelay (10000);
if ((timeout--) == 0) {
#ifdef DEBUG
printf ("hmmm, should not have waited...");
#endif
break;
}
miiphy_read (dev->name, phyAddr, 0x1, &phyStatus);
#ifdef DEBUG
printf ("=");
#endif
} while ((phyStatus & 0x0004)); /* !link up */
timeout = 1000;
do { /* wait for link status to come back up */
udelay (10000);
if ((timeout--) == 0) {
printf ("failed. Link is down.\n");
break;
}
miiphy_read (dev->name, phyAddr, 0x1, &phyStatus);
#ifdef DEBUG
printf ("+");
#endif
} while (!(phyStatus & 0x0004)); /* !link up */
#ifdef DEBUG
printf ("done.\n");
#endif
} else { /* MII100 */
/*
* Set the auto-negotiation advertisement register bits
*/
miiphy_write (dev->name, phyAddr, 0x4, 0x01e1);
/*
* Set MDIO bit 0.12 = 1(&& bit 0.9=1?) to enable auto-negotiation
*/
miiphy_write (dev->name, phyAddr, 0x0, 0x1200);
/*
* Wait for AN completion
*/
timeout = 5000;
do {
udelay (1000);
if ((timeout--) == 0) {
#ifdef DEBUG
printf ("PHY auto neg 0 failed...\n");
#endif
return -1;
}
if (miiphy_read (dev->name, phyAddr, 0x1, &phyStatus) !=
0) {
#ifdef DEBUG
printf ("PHY auto neg 1 failed 0x%04x...\n", phyStatus);
#endif
return -1;
}
} while (!(phyStatus & 0x0004));
#ifdef DEBUG
printf ("PHY auto neg complete! \n");
#endif
}
}
/*
* Enable FEC-Lite controller
*/
fec->eth->ecntrl |= 0x00000006;
#ifdef DEBUG
if (fec->xcv_type != SEVENWIRE)
mpc8220_fec_phydump (dev->name);
#endif
/*
* Enable SmartDMA receive task
*/
DMA_TASK_ENABLE (FEC_RECV_TASK_NO);
#ifdef DEBUG
printf ("mpc8220_fec_init... Done \n");
#endif
return 1;
}
/********************************************************************/
static void mpc8220_fec_halt (struct eth_device *dev)
{
mpc8220_fec_priv *fec = (mpc8220_fec_priv *) dev->priv;
int counter = 0xffff;
#ifdef DEBUG
if (fec->xcv_type != SEVENWIRE)
mpc8220_fec_phydump (dev->name);
#endif
/*
* mask FEC chip interrupts
*/
fec->eth->imask = 0;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
fec->eth->x_cntrl |= 0x00000001;
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(fec->eth->ievent & 0x10000000)));
/*
* Disable SmartDMA tasks
*/
DMA_TASK_DISABLE (FEC_XMIT_TASK_NO);
DMA_TASK_DISABLE (FEC_RECV_TASK_NO);
/*
* Disable the Ethernet Controller
*/
fec->eth->ecntrl &= 0xfffffffd;
/*
* Clear FIFO status registers
*/
fec->eth->rfifo_status &= 0x00700000;
fec->eth->tfifo_status &= 0x00700000;
fec->eth->reset_cntrl = 0x01000000;
/*
* Issue a reset command to the FEC chip
*/
fec->eth->ecntrl |= 0x1;
/*
* wait at least 16 clock cycles
*/
udelay (10);
#ifdef DEBUG
printf ("Ethernet task stopped\n");
#endif
}
#ifdef DEBUG
/********************************************************************/
static void tfifo_print (char *devname, mpc8220_fec_priv * fec)
{
u16 phyAddr = CONFIG_PHY_ADDR;
u16 phyStatus;
if ((fec->eth->tfifo_lrf_ptr != fec->eth->tfifo_lwf_ptr)
|| (fec->eth->tfifo_rdptr != fec->eth->tfifo_wrptr)) {
miiphy_read (devname, phyAddr, 0x1, &phyStatus);
printf ("\nphyStatus: 0x%04x\n", phyStatus);
printf ("ecntrl: 0x%08x\n", fec->eth->ecntrl);
printf ("ievent: 0x%08x\n", fec->eth->ievent);
printf ("x_status: 0x%08x\n", fec->eth->x_status);
printf ("tfifo: status 0x%08x\n", fec->eth->tfifo_status);
printf (" control 0x%08x\n", fec->eth->tfifo_cntrl);
printf (" lrfp 0x%08x\n", fec->eth->tfifo_lrf_ptr);
printf (" lwfp 0x%08x\n", fec->eth->tfifo_lwf_ptr);
printf (" alarm 0x%08x\n", fec->eth->tfifo_alarm);
printf (" readptr 0x%08x\n", fec->eth->tfifo_rdptr);
printf (" writptr 0x%08x\n", fec->eth->tfifo_wrptr);
}
}
static void rfifo_print (char *devname, mpc8220_fec_priv * fec)
{
u16 phyAddr = CONFIG_PHY_ADDR;
u16 phyStatus;
if ((fec->eth->rfifo_lrf_ptr != fec->eth->rfifo_lwf_ptr)
|| (fec->eth->rfifo_rdptr != fec->eth->rfifo_wrptr)) {
miiphy_read (devname, phyAddr, 0x1, &phyStatus);
printf ("\nphyStatus: 0x%04x\n", phyStatus);
printf ("ecntrl: 0x%08x\n", fec->eth->ecntrl);
printf ("ievent: 0x%08x\n", fec->eth->ievent);
printf ("x_status: 0x%08x\n", fec->eth->x_status);
printf ("rfifo: status 0x%08x\n", fec->eth->rfifo_status);
printf (" control 0x%08x\n", fec->eth->rfifo_cntrl);
printf (" lrfp 0x%08x\n", fec->eth->rfifo_lrf_ptr);
printf (" lwfp 0x%08x\n", fec->eth->rfifo_lwf_ptr);
printf (" alarm 0x%08x\n", fec->eth->rfifo_alarm);
printf (" readptr 0x%08x\n", fec->eth->rfifo_rdptr);
printf (" writptr 0x%08x\n", fec->eth->rfifo_wrptr);
}
}
#endif /* DEBUG */
/********************************************************************/
static int mpc8220_fec_send (struct eth_device *dev, volatile void *eth_data,
int data_length)
{
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
mpc8220_fec_priv *fec = (mpc8220_fec_priv *) dev->priv;
FEC_TBD *pTbd;
#ifdef DEBUG
printf ("tbd status: 0x%04x\n", fec->tbdBase[0].status);
tfifo_print (dev->name, fec);
#endif
/*
* Clear Tx BD ring at first
*/
mpc8220_fec_tbd_scrub (fec);
/*
* Check for valid length of data.
*/
if ((data_length > 1500) || (data_length <= 0)) {
return -1;
}
/*
* Check the number of vacant TxBDs.
*/
if (fec->cleanTbdNum < 1) {
#ifdef DEBUG
printf ("No available TxBDs ...\n");
#endif
return -1;
}
/*
* Get the first TxBD to send the mac header
*/
pTbd = &fec->tbdBase[fec->tbdIndex];
pTbd->dataLength = data_length;
pTbd->dataPointer = (u32) eth_data;
pTbd->status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
fec->tbdIndex = (fec->tbdIndex + 1) % FEC_TBD_NUM;
#ifdef DEBUG
printf ("DMA_TASK_ENABLE, fec->tbdIndex = %d \n", fec->tbdIndex);
#endif
/*
* Kick the MII i/f
*/
if (fec->xcv_type != SEVENWIRE) {
u16 phyStatus;
miiphy_read (dev->name, 0, 0x1, &phyStatus);
}
/*
* Enable SmartDMA transmit task
*/
#ifdef DEBUG
tfifo_print (dev->name, fec);
#endif
DMA_TASK_ENABLE (FEC_XMIT_TASK_NO);
#ifdef DEBUG
tfifo_print (dev->name, fec);
#endif
#ifdef DEBUG
printf ("+");
#endif
fec->cleanTbdNum -= 1;
#ifdef DEBUG
printf ("smartDMA ethernet Tx task enabled\n");
#endif
/*
* wait until frame is sent .
*/
while (pTbd->status & FEC_TBD_READY) {
udelay (10);
#ifdef DEBUG
printf ("TDB status = %04x\n", pTbd->status);
#endif
}
return 0;
}
/********************************************************************/
static int mpc8220_fec_recv (struct eth_device *dev)
{
/*
* This command pulls one frame from the card
*/
mpc8220_fec_priv *fec = (mpc8220_fec_priv *) dev->priv;
FEC_RBD *pRbd = &fec->rbdBase[fec->rbdIndex];
unsigned long ievent;
int frame_length, len = 0;
NBUF *frame;
#ifdef DEBUG
printf ("mpc8220_fec_recv %d Start...\n", fec->rbdIndex);
printf ("-");
#endif
/*
* Check if any critical events have happened
*/
ievent = fec->eth->ievent;
fec->eth->ievent = ievent;
if (ievent & 0x20060000) {
/* BABT, Rx/Tx FIFO errors */
mpc8220_fec_halt (dev);
mpc8220_fec_init (dev, NULL);
return 0;
}
if (ievent & 0x80000000) {
/* Heartbeat error */
fec->eth->x_cntrl |= 0x00000001;
}
if (ievent & 0x10000000) {
/* Graceful stop complete */
if (fec->eth->x_cntrl & 0x00000001) {
mpc8220_fec_halt (dev);
fec->eth->x_cntrl &= ~0x00000001;
mpc8220_fec_init (dev, NULL);
}
}
if (!(pRbd->status & FEC_RBD_EMPTY)) {
if ((pRbd->status & FEC_RBD_LAST)
&& !(pRbd->status & FEC_RBD_ERR)
&& ((pRbd->dataLength - 4) > 14)) {
/*
* Get buffer address and size
*/
frame = (NBUF *) pRbd->dataPointer;
frame_length = pRbd->dataLength - 4;
#if (0)
{
int i;
printf ("recv data hdr:");
for (i = 0; i < 14; i++)
printf ("%x ", *(frame->head + i));
printf ("\n");
}
#endif
/*
* Fill the buffer and pass it to upper layers
*/
/* memcpy(buff, frame->head, 14);
memcpy(buff + 14, frame->data, frame_length);*/
NetReceive ((volatile uchar *) pRbd->dataPointer,
frame_length);
len = frame_length;
}
/*
* Reset buffer descriptor as empty
*/
mpc8220_fec_rbd_clean (fec, pRbd);
}
DMA_CLEAR_IEVENT (FEC_RECV_TASK_NO);
return len;
}
/********************************************************************/
int mpc8220_fec_initialize (bd_t * bis)
{
mpc8220_fec_priv *fec;
#ifdef CONFIG_HAS_ETH1
mpc8220_fec_priv *fec2;
#endif
struct eth_device *dev;
char *tmp, *end;
char env_enetaddr[6];
#ifdef CONFIG_HAS_ETH1
char env_enet1addr[6];
#endif
int i;
fec = (mpc8220_fec_priv *) malloc (sizeof (*fec));
dev = (struct eth_device *) malloc (sizeof (*dev));
memset (dev, 0, sizeof *dev);
fec->eth = (ethernet_regs *) MMAP_FEC1;
#ifdef CONFIG_HAS_ETH1
fec2 = (mpc8220_fec_priv *) malloc (sizeof (*fec));
fec2->eth = (ethernet_regs *) MMAP_FEC2;
#endif
fec->tbdBase = (FEC_TBD *) FEC_BD_BASE;
fec->rbdBase =
(FEC_RBD *) (FEC_BD_BASE + FEC_TBD_NUM * sizeof (FEC_TBD));
fec->xcv_type = MII100;
dev->priv = (void *) fec;
dev->iobase = MMAP_FEC1;
dev->init = mpc8220_fec_init;
dev->halt = mpc8220_fec_halt;
dev->send = mpc8220_fec_send;
dev->recv = mpc8220_fec_recv;
sprintf (dev->name, "FEC ETHERNET");
eth_register (dev);
#if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII)
miiphy_register (dev->name,
fec8220_miiphy_read, fec8220_miiphy_write);
#endif
/*
* Try to set the mac address now. The fec mac address is
* a garbage after reset. When not using fec for booting
* the Linux fec driver will try to work with this garbage.
*/
tmp = getenv ("ethaddr");
if (tmp) {
for (i = 0; i < 6; i++) {
env_enetaddr[i] =
tmp ? simple_strtoul (tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end + 1 : end;
}
mpc8220_fec_set_hwaddr (fec, env_enetaddr);
}
#ifdef CONFIG_HAS_ETH1
tmp = getenv ("eth1addr");
if (tmp) {
for (i = 0; i < 6; i++) {
env_enet1addr[i] =
tmp ? simple_strtoul (tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end + 1 : end;
}
mpc8220_fec_set_hwaddr (fec2, env_enet1addr);
}
#endif
return 1;
}
/* MII-interface related functions */
/********************************************************************/
int fec8220_miiphy_read (char *devname, u8 phyAddr, u8 regAddr, u16 * retVal)
{
ethernet_regs *eth = (ethernet_regs *) MMAP_FEC1;
u32 reg; /* convenient holder for the PHY register */
u32 phy; /* convenient holder for the PHY */
int timeout = 0xffff;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
eth->mii_data =
(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy
| reg);
/*
* wait for the related interrupt
*/
while ((timeout--) && (!(eth->ievent & 0x00800000)));
if (timeout == 0) {
#ifdef DEBUG
printf ("Read MDIO failed...\n");
#endif
return -1;
}
/*
* clear mii interrupt bit
*/
eth->ievent = 0x00800000;
/*
* it's now safe to read the PHY's register
*/
*retVal = (u16) eth->mii_data;
return 0;
}
/********************************************************************/
int fec8220_miiphy_write (char *devname, u8 phyAddr, u8 regAddr, u16 data)
{
ethernet_regs *eth = (ethernet_regs *) MMAP_FEC1;
u32 reg; /* convenient holder for the PHY register */
u32 phy; /* convenient holder for the PHY */
int timeout = 0xffff;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
eth->mii_data = (FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data);
/*
* wait for the MII interrupt
*/
while ((timeout--) && (!(eth->ievent & 0x00800000)));
if (timeout == 0) {
#ifdef DEBUG
printf ("Write MDIO failed...\n");
#endif
return -1;
}
/*
* clear MII interrupt bit
*/
eth->ievent = 0x00800000;
return 0;
}
#ifdef DEBUG
static u32 local_crc32 (char *string, unsigned int crc_value, int len)
{
int i;
char c;
unsigned int crc, count;
/*
* crc32 algorithm
*/
/*
* crc = 0xffffffff; * The initialized value should be 0xffffffff
*/
crc = crc_value;
for (i = len; --i >= 0;) {
c = *string++;
for (count = 0; count < 8; count++) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
c >>= 1;
}
}
/*
* In big endian system, do byte swaping for crc value
*/
return crc;
}
#endif /* DEBUG */
#endif /* CONFIG_MPC8220_FEC */