1
0
uboot-1.1.4-kirkwood/board/evb64260/sdram_init.c

663 lines
16 KiB
C
Raw Permalink Normal View History

2024-01-07 23:57:24 +01:00
/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* sdram_init.c - automatic memory sizing */
#include <common.h>
#include <74xx_7xx.h>
#include <galileo/memory.h>
#include <galileo/pci.h>
#include <galileo/gt64260R.h>
#include <net.h>
#include "eth.h"
#include "mpsc.h"
#include "i2c.h"
#include "64260.h"
/* #define DEBUG */
#define MAP_PCI
#ifdef DEBUG
#define DP(x) x
#else
#define DP(x)
#endif
#define GB (1 << 30)
/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
uchar drb_size;
uchar registered, ecc;
uchar tpar;
uchar tras_clocks;
uchar burst_len;
uchar banks, slot;
int size; /* detected size, not from I2C but from dram_size() */
} sdram_info_t;
#ifdef DEBUG
void dump_dimm_info (struct sdram_info *d)
{
static const char *ecc_legend[] = { "", " Parity", " ECC" };
printf ("dimm%s %sDRAM: %dMibytes:\n",
ecc_legend[d->ecc],
d->registered ? "R" : "", (d->size >> 20));
printf (" drb=%d tpar=%d tras=%d burstlen=%d banks=%d slot=%d\n",
d->drb_size, d->tpar, d->tras_clocks, d->burst_len,
d->banks, d->slot);
}
#endif
static int
memory_map_bank (unsigned int bankNo,
unsigned int bankBase, unsigned int bankLength)
{
#ifdef DEBUG
if (bankLength > 0) {
printf ("mapping bank %d at %08x - %08x\n",
bankNo, bankBase, bankBase + bankLength - 1);
} else {
printf ("unmapping bank %d\n", bankNo);
}
#endif
memoryMapBank (bankNo, bankBase, bankLength);
return 0;
}
#ifdef MAP_PCI
static int
memory_map_bank_pci (unsigned int bankNo,
unsigned int bankBase, unsigned int bankLength)
{
PCI_HOST host;
for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
const int features =
PREFETCH_ENABLE |
DELAYED_READ_ENABLE |
AGGRESSIVE_PREFETCH |
READ_LINE_AGGRESSIVE_PREFETCH |
READ_MULTI_AGGRESSIVE_PREFETCH |
MAX_BURST_4 | PCI_NO_SWAP;
pciMapMemoryBank (host, bankNo, bankBase, bankLength);
pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
bankLength);
pciSetRegionFeatures (host, bankNo, features, bankBase,
bankLength);
}
return 0;
}
#endif
/* ------------------------------------------------------------------------- */
/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NS10to10PS (unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return (ns * 100 + ns10 * 10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NSto10PS (unsigned char spd_byte)
{
return (spd_byte * 100);
}
#ifdef CONFIG_ZUMA_V2
static int check_dimm (uchar slot, sdram_info_t * info)
{
/* assume 2 dimms, 2 banks each 256M - we dont have an
* dimm i2c so rely on the detection routines later */
memset (info, 0, sizeof (*info));
info->slot = slot;
info->banks = 2; /* Detect later */
info->registered = 0;
info->drb_size = 32; /* 16 - 256MBit, 32 - 512MBit
but doesn't matter, both do same
thing in setup_sdram() */
info->tpar = 3;
info->tras_clocks = 5;
info->burst_len = 4;
#ifdef CONFIG_ECC
info->ecc = 0; /* Detect later */
#endif /* CONFIG_ECC */
return 0;
}
#elif defined(CONFIG_P3G4)
static int check_dimm (uchar slot, sdram_info_t * info)
{
memset (info, 0, sizeof (*info));
if (slot)
return 0;
info->slot = slot;
info->banks = 1;
info->registered = 0;
info->drb_size = 4;
info->tpar = 3;
info->tras_clocks = 6;
info->burst_len = 4;
#ifdef CONFIG_ECC
info->ecc = 2;
#endif
return 0;
}
#else /* ! CONFIG_ZUMA_V2 && ! CONFIG_P3G4 */
/* This code reads the SPD chip on the sdram and populates
* the array which is passed in with the relevant information */
static int check_dimm (uchar slot, sdram_info_t * info)
{
DECLARE_GLOBAL_DATA_PTR;
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
int ret;
uchar rows, cols, sdram_banks, supp_cal, width, cal_val;
ulong tmemclk;
uchar trp_clocks, trcd_clocks;
uchar data[128];
get_clocks ();
tmemclk = 1000000000 / (gd->bus_clk / 100); /* in 10 ps units */
#ifdef CONFIG_EVB64260_750CX
if (0 != slot) {
printf ("check_dimm: The EVB-64260-750CX only has 1 DIMM,");
printf (" called with slot=%d insetad!\n", slot);
return 0;
}
#endif
DP (puts ("before i2c read\n"));
ret = i2c_read (addr, 0, 128, data, 0);
DP (puts ("after i2c read\n"));
/* zero all the values */
memset (info, 0, sizeof (*info));
if (ret) {
DP (printf ("No DIMM in slot %d [err = %x]\n", slot, ret));
return 0;
}
/* first, do some sanity checks */
if (data[2] != 0x4) {
printf ("Not SDRAM in slot %d\n", slot);
return 0;
}
/* get various information */
rows = data[3];
cols = data[4];
info->banks = data[5];
sdram_banks = data[17];
width = data[13] & 0x7f;
DP (printf
("sdram_banks: %d, banks: %d\n", sdram_banks, info->banks));
/* check if the memory is registered */
if (data[21] & (BIT1 | BIT4))
info->registered = 1;
#ifdef CONFIG_ECC
/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
info->ecc = (data[11] & 2) >> 1;
#endif
/* bit 1 is CL2, bit 2 is CL3 */
supp_cal = (data[18] & 0x6) >> 1;
/* compute the relevant clock values */
trp_clocks = (NSto10PS (data[27]) + (tmemclk - 1)) / tmemclk;
trcd_clocks = (NSto10PS (data[29]) + (tmemclk - 1)) / tmemclk;
info->tras_clocks = (NSto10PS (data[30]) + (tmemclk - 1)) / tmemclk;
DP (printf ("trp = %d\ntrcd_clocks = %d\ntras_clocks = %d\n",
trp_clocks, trcd_clocks, info->tras_clocks));
/* try a CAS latency of 3 first... */
cal_val = 0;
if (supp_cal & 3) {
if (NS10to10PS (data[9]) <= tmemclk)
cal_val = 3;
}
/* then 2... */
if (supp_cal & 2) {
if (NS10to10PS (data[23]) <= tmemclk)
cal_val = 2;
}
DP (printf ("cal_val = %d\n", cal_val));
/* bummer, did't work... */
if (cal_val == 0) {
DP (printf ("Couldn't find a good CAS latency\n"));
return 0;
}
/* get the largest delay -- these values need to all be the same
* see Res#6 */
info->tpar = cal_val;
if (trp_clocks > info->tpar)
info->tpar = trp_clocks;
if (trcd_clocks > info->tpar)
info->tpar = trcd_clocks;
DP (printf ("tpar set to: %d\n", info->tpar));
#ifdef CFG_BROKEN_CL2
if (info->tpar == 2) {
info->tpar = 3;
DP (printf ("tpar fixed-up to: %d\n", info->tpar));
}
#endif
/* compute the module DRB size */
info->drb_size =
(((1 << (rows + cols)) * sdram_banks) * width) / _16M;
DP (printf ("drb_size set to: %d\n", info->drb_size));
/* find the burst len */
info->burst_len = data[16] & 0xf;
if ((info->burst_len & 8) == 8) {
info->burst_len = 1;
} else if ((info->burst_len & 4) == 4) {
info->burst_len = 0;
} else {
return 0;
}
info->slot = slot;
return 0;
}
#endif /* ! CONFIG_ZUMA_V2 */
static int setup_sdram_common (sdram_info_t info[2])
{
ulong tmp;
int tpar = 2, tras_clocks = 5, registered = 1, ecc = 2;
if (!info[0].banks && !info[1].banks)
return 0;
if (info[0].banks) {
if (info[0].tpar > tpar)
tpar = info[0].tpar;
if (info[0].tras_clocks > tras_clocks)
tras_clocks = info[0].tras_clocks;
if (!info[0].registered)
registered = 0;
if (info[0].ecc != 2)
ecc = 0;
}
if (info[1].banks) {
if (info[1].tpar > tpar)
tpar = info[1].tpar;
if (info[1].tras_clocks > tras_clocks)
tras_clocks = info[1].tras_clocks;
if (!info[1].registered)
registered = 0;
if (info[1].ecc != 2)
ecc = 0;
}
/* SDRAM configuration */
tmp = GTREGREAD (SDRAM_CONFIGURATION);
/* Turn on physical interleave if both DIMMs
* have even numbers of banks. */
if ((info[0].banks == 0 || info[0].banks == 2) &&
(info[1].banks == 0 || info[1].banks == 2)) {
/* physical interleave on */
tmp &= ~(1 << 15);
} else {
/* physical interleave off */
tmp |= (1 << 15);
}
tmp |= (registered << 17);
/* Use buffer 1 to return read data to the CPU
* See Res #12 */
tmp |= (1 << 26);
GT_REG_WRITE (SDRAM_CONFIGURATION, tmp);
DP (printf ("SDRAM config: %08x\n", GTREGREAD (SDRAM_CONFIGURATION)));
/* SDRAM timing */
tmp = (((tpar == 3) ? 2 : 1) |
(((tpar == 3) ? 2 : 1) << 2) |
(((tpar == 3) ? 2 : 1) << 4) | (tras_clocks << 8));
#ifdef CONFIG_ECC
/* Setup ECC */
if (ecc == 2)
tmp |= 1 << 13;
#endif /* CONFIG_ECC */
GT_REG_WRITE (SDRAM_TIMING, tmp);
DP (printf ("SDRAM timing: %08x (%d,%d,%d,%d)\n",
GTREGREAD (SDRAM_TIMING), tpar, tpar, tpar, tras_clocks));
/* SDRAM address decode register */
/* program this with the default value */
GT_REG_WRITE (SDRAM_ADDRESS_DECODE, 0x2);
DP (printf ("SDRAM decode: %08x\n",
GTREGREAD (SDRAM_ADDRESS_DECODE)));
return 0;
}
/* sets up the GT properly with information passed in */
static int setup_sdram (sdram_info_t * info)
{
ulong tmp, check;
ulong *addr = 0;
int i;
/* sanity checking */
if (!info->banks)
return 0;
/* ---------------------------- */
/* Program the GT with the discovered data */
/* bank parameters */
tmp = (0xf << 16); /* leave all virt bank pages open */
DP (printf ("drb_size: %d\n", info->drb_size));
switch (info->drb_size) {
case 1:
tmp |= (1 << 14);
break;
case 4:
case 8:
tmp |= (2 << 14);
break;
case 16:
case 32:
tmp |= (3 << 14);
break;
default:
printf ("Error in dram size calculation\n");
return 1;
}
/* SDRAM bank parameters */
/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
GT_REG_WRITE (SDRAM_BANK0PARAMETERS + (info->slot * 0x8), tmp);
GT_REG_WRITE (SDRAM_BANK1PARAMETERS + (info->slot * 0x8), tmp);
DP (printf
("SDRAM bankparam slot %d (bank %d+%d): %08lx\n", info->slot,
info->slot * 2, (info->slot * 2) + 1, tmp));
/* set the SDRAM configuration for each bank */
for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) {
DP (printf ("*** Running a MRS cycle for bank %d ***\n", i));
/* map the bank */
memory_map_bank (i, 0, GB / 4);
/* set SDRAM mode */
GT_REG_WRITE (SDRAM_OPERATION_MODE, 0x3);
check = GTREGREAD (SDRAM_OPERATION_MODE);
/* dummy write */
*addr = 0;
/* wait for the command to complete */
while ((GTREGREAD (SDRAM_OPERATION_MODE) & (1 << 31)) == 0);
/* switch back to normal operation mode */
GT_REG_WRITE (SDRAM_OPERATION_MODE, 0);
check = GTREGREAD (SDRAM_OPERATION_MODE);
/* unmap the bank */
memory_map_bank (i, 0, 0);
DP (printf ("*** MRS cycle for bank %d done ***\n", i));
}
return 0;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
static long int dram_size (long int *base, long int maxsize)
{
volatile long int *addr, *b = base;
long int cnt, val, save1, save2;
#define STARTVAL (1<<20) /* start test at 1M */
for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1 = *addr; /* save contents of addr */
save2 = *b; /* save contents of base */
*addr = cnt; /* write cnt to addr */
*b = 0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr = save1; /* restore *addr */
*b = save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
*addr = save1;
*b = save2;
if (val != cnt) {
/* fix boundary condition.. STARTVAL means zero */
if (cnt == STARTVAL / sizeof (long))
cnt = 0;
return (cnt * sizeof (long));
}
}
return maxsize;
}
/* ------------------------------------------------------------------------- */
/* U-Boot interface function to SDRAM init - this is where all the
* controlling logic happens */
long int initdram (int board_type)
{
ulong checkbank[4] = {[0 ... 3] = 0 };
int bank_no;
ulong total;
int nhr;
sdram_info_t dimm_info[2];
/* first, use the SPD to get info about the SDRAM */
/* check the NHR bit and skip mem init if it's already done */
nhr = get_hid0 () & (1 << 16);
if (nhr) {
printf ("Skipping SDRAM setup due to NHR bit being set\n");
} else {
/* DIMM0 */
check_dimm (0, &dimm_info[0]);
/* DIMM1 */
#ifndef CONFIG_EVB64260_750CX /* EVB64260_750CX has only 1 DIMM */
check_dimm (1, &dimm_info[1]);
#else /* CONFIG_EVB64260_750CX */
memset (&dimm_info[1], 0, sizeof (sdram_info_t));
#endif
/* unmap all banks */
memory_map_bank (0, 0, 0);
memory_map_bank (1, 0, 0);
memory_map_bank (2, 0, 0);
memory_map_bank (3, 0, 0);
/* Now, program the GT with the correct values */
if (setup_sdram_common (dimm_info)) {
printf ("Setup common failed.\n");
}
if (setup_sdram (&dimm_info[0])) {
printf ("Setup for DIMM1 failed.\n");
}
if (setup_sdram (&dimm_info[1])) {
printf ("Setup for DIMM2 failed.\n");
}
/* set the NHR bit */
set_hid0 (get_hid0 () | (1 << 16));
}
/* next, size the SDRAM banks */
total = 0;
if (dimm_info[0].banks > 0)
checkbank[0] = 1;
if (dimm_info[0].banks > 1)
checkbank[1] = 1;
if (dimm_info[0].banks > 2)
printf ("Error, SPD claims DIMM1 has >2 banks\n");
if (dimm_info[1].banks > 0)
checkbank[2] = 1;
if (dimm_info[1].banks > 1)
checkbank[3] = 1;
if (dimm_info[1].banks > 2)
printf ("Error, SPD claims DIMM2 has >2 banks\n");
/* Generic dram sizer: works even if we don't have i2c DIMMs,
* as long as the timing settings are more or less correct */
/*
* pass 1: size all the banks, using first bat (0-256M)
* limitation: we only support 256M per bank due to
* us only having 1 BAT for all DRAM
*/
for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) {
/* skip over banks that are not populated */
if (!checkbank[bank_no])
continue;
DP (printf ("checking bank %d\n", bank_no));
memory_map_bank (bank_no, 0, GB / 4);
checkbank[bank_no] = dram_size (NULL, GB / 4);
memory_map_bank (bank_no, 0, 0);
DP (printf ("bank %d %08lx\n", bank_no, checkbank[bank_no]));
}
/*
* pass 2: contiguously map each bank into physical address
* space.
*/
dimm_info[0].banks = dimm_info[1].banks = 0;
for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) {
if (!checkbank[bank_no])
continue;
dimm_info[bank_no / 2].banks++;
dimm_info[bank_no / 2].size += checkbank[bank_no];
memory_map_bank (bank_no, total, checkbank[bank_no]);
#ifdef MAP_PCI
memory_map_bank_pci (bank_no, total, checkbank[bank_no]);
#endif
total += checkbank[bank_no];
}
#ifdef CONFIG_ECC
#ifdef CONFIG_ZUMA_V2
/*
* We always enable ECC when bank 2 and 3 are unpopulated
* If we 2 or 3 are populated, we CAN'T support ECC.
* (Zuma boards only support ECC in banks 0 and 1; assume that
* in that configuration, ECC chips are mounted, even for stacked
* chips)
*/
if (checkbank[2] == 0 && checkbank[3] == 0) {
dimm_info[0].ecc = 2;
GT_REG_WRITE (SDRAM_TIMING,
GTREGREAD (SDRAM_TIMING) | (1 << 13));
/* TODO: do we have to run MRS cycles again? */
}
#endif /* CONFIG_ZUMA_V2 */
if (GTREGREAD (SDRAM_TIMING) & (1 << 13)) {
puts ("[ECC] ");
}
#endif /* CONFIG_ECC */
#ifdef DEBUG
dump_dimm_info (&dimm_info[0]);
dump_dimm_info (&dimm_info[1]);
#endif
/* TODO: return at MOST 256M? */
/* return total > GB/4 ? GB/4 : total; */
return total;
}