1
0
uboot-1.1.4-kirkwood/drivers/bcm570x.c

1692 lines
46 KiB
C
Raw Normal View History

2024-01-07 23:57:24 +01:00
/*
* Broadcom BCM570x Ethernet Driver for U-Boot.
* Support 5701, 5702, 5703, and 5704. Single instance driver.
* Copyright (C) 2002 James F. Dougherty (jfd@broadcom.com)
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NET) && (!defined(CONFIG_NET_MULTI)) && \
defined(CONFIG_BCM570x)
#ifdef CONFIG_BMW
#include <mpc824x.h>
#endif
#include <net.h>
#include "bcm570x_mm.h"
#include "bcm570x_autoneg.h"
#include <pci.h>
#include <malloc.h>
/*
* PCI Registers and definitions.
*/
#define PCI_CMD_MASK 0xffff0000 /* mask to save status bits */
#define PCI_ANY_ID (~0)
/*
* PCI memory base for Ethernet device as well as device Interrupt.
*/
#define BCM570X_MBAR 0x80100000
#define BCM570X_ILINE 1
#define SECOND_USEC 1000000
#define MAX_PACKET_SIZE 1600
#define MAX_UNITS 4
/* Globals to this module */
int initialized = 0;
unsigned int ioBase = 0;
volatile PLM_DEVICE_BLOCK pDevice = NULL; /* 570x softc */
volatile PUM_DEVICE_BLOCK pUmDevice = NULL;
/* Used to pass the full-duplex flag, etc. */
int line_speed[MAX_UNITS] = {0,0,0,0};
static int full_duplex[MAX_UNITS] = {1,1,1,1};
static int rx_flow_control[MAX_UNITS] = {0,0,0,0};
static int tx_flow_control[MAX_UNITS] = {0,0,0,0};
static int auto_flow_control[MAX_UNITS] = {0,0,0,0};
static int tx_checksum[MAX_UNITS] = {1,1,1,1};
static int rx_checksum[MAX_UNITS] = {1,1,1,1};
static int auto_speed[MAX_UNITS] = {1,1,1,1};
#if JUMBO_FRAMES
/* Jumbo MTU for interfaces. */
static int mtu[MAX_UNITS] = {0,0,0,0};
#endif
/* Turn on Wake-on lan for a device unit */
static int enable_wol[MAX_UNITS] = {0,0,0,0};
#define TX_DESC_CNT DEFAULT_TX_PACKET_DESC_COUNT
static unsigned int tx_pkt_desc_cnt[MAX_UNITS] =
{TX_DESC_CNT,TX_DESC_CNT,TX_DESC_CNT, TX_DESC_CNT};
#define RX_DESC_CNT DEFAULT_STD_RCV_DESC_COUNT
static unsigned int rx_std_desc_cnt[MAX_UNITS] =
{RX_DESC_CNT,RX_DESC_CNT,RX_DESC_CNT,RX_DESC_CNT};
static unsigned int rx_adaptive_coalesce[MAX_UNITS] = {1,1,1,1};
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
#define JBO_DESC_CNT DEFAULT_JUMBO_RCV_DESC_COUNT
static unsigned int rx_jumbo_desc_cnt[MAX_UNITS] =
{JBO_DESC_CNT, JBO_DESC_CNT, JBO_DESC_CNT, JBO_DESC_CNT};
#endif
#define RX_COAL_TK DEFAULT_RX_COALESCING_TICKS
static unsigned int rx_coalesce_ticks[MAX_UNITS] =
{RX_COAL_TK, RX_COAL_TK, RX_COAL_TK, RX_COAL_TK};
#define RX_COAL_FM DEFAULT_RX_MAX_COALESCED_FRAMES
static unsigned int rx_max_coalesce_frames[MAX_UNITS] =
{RX_COAL_FM, RX_COAL_FM, RX_COAL_FM, RX_COAL_FM};
#define TX_COAL_TK DEFAULT_TX_COALESCING_TICKS
static unsigned int tx_coalesce_ticks[MAX_UNITS] =
{TX_COAL_TK, TX_COAL_TK, TX_COAL_TK, TX_COAL_TK};
#define TX_COAL_FM DEFAULT_TX_MAX_COALESCED_FRAMES
static unsigned int tx_max_coalesce_frames[MAX_UNITS] =
{TX_COAL_FM, TX_COAL_FM, TX_COAL_FM, TX_COAL_FM};
#define ST_COAL_TK DEFAULT_STATS_COALESCING_TICKS
static unsigned int stats_coalesce_ticks[MAX_UNITS] =
{ST_COAL_TK, ST_COAL_TK, ST_COAL_TK, ST_COAL_TK};
/*
* Legitimate values for BCM570x device types
*/
typedef enum {
BCM5700VIGIL = 0,
BCM5700A6,
BCM5700T6,
BCM5700A9,
BCM5700T9,
BCM5700,
BCM5701A5,
BCM5701T1,
BCM5701T8,
BCM5701A7,
BCM5701A10,
BCM5701A12,
BCM5701,
BCM5702,
BCM5703,
BCM5703A31,
TC996T,
TC996ST,
TC996SSX,
TC996SX,
TC996BT,
TC997T,
TC997SX,
TC1000T,
TC940BR01,
TC942BR01,
NC6770,
NC7760,
NC7770,
NC7780
} board_t;
/* Chip-Rev names for each device-type */
static struct {
char* name;
} chip_rev[] = {
{"BCM5700VIGIL"},
{"BCM5700A6"},
{"BCM5700T6"},
{"BCM5700A9"},
{"BCM5700T9"},
{"BCM5700"},
{"BCM5701A5"},
{"BCM5701T1"},
{"BCM5701T8"},
{"BCM5701A7"},
{"BCM5701A10"},
{"BCM5701A12"},
{"BCM5701"},
{"BCM5702"},
{"BCM5703"},
{"BCM5703A31"},
{"TC996T"},
{"TC996ST"},
{"TC996SSX"},
{"TC996SX"},
{"TC996BT"},
{"TC997T"},
{"TC997SX"},
{"TC1000T"},
{"TC940BR01"},
{"TC942BR01"},
{"NC6770"},
{"NC7760"},
{"NC7770"},
{"NC7780"},
{0}
};
/* indexed by board_t, above */
static struct {
char *name;
} board_info[] = {
{ "Broadcom Vigil B5700 1000Base-T" },
{ "Broadcom BCM5700 1000Base-T" },
{ "Broadcom BCM5700 1000Base-SX" },
{ "Broadcom BCM5700 1000Base-SX" },
{ "Broadcom BCM5700 1000Base-T" },
{ "Broadcom BCM5700" },
{ "Broadcom BCM5701 1000Base-T" },
{ "Broadcom BCM5701 1000Base-T" },
{ "Broadcom BCM5701 1000Base-T" },
{ "Broadcom BCM5701 1000Base-SX" },
{ "Broadcom BCM5701 1000Base-T" },
{ "Broadcom BCM5701 1000Base-T" },
{ "Broadcom BCM5701" },
{ "Broadcom BCM5702 1000Base-T" },
{ "Broadcom BCM5703 1000Base-T" },
{ "Broadcom BCM5703 1000Base-SX" },
{ "3Com 3C996 10/100/1000 Server NIC" },
{ "3Com 3C996 10/100/1000 Server NIC" },
{ "3Com 3C996 Gigabit Fiber-SX Server NIC" },
{ "3Com 3C996 Gigabit Fiber-SX Server NIC" },
{ "3Com 3C996B Gigabit Server NIC" },
{ "3Com 3C997 Gigabit Server NIC" },
{ "3Com 3C997 Gigabit Fiber-SX Server NIC" },
{ "3Com 3C1000 Gigabit NIC" },
{ "3Com 3C940 Gigabit LOM (21X21)" },
{ "3Com 3C942 Gigabit LOM (31X31)" },
{ "Compaq NC6770 Gigabit Server Adapter" },
{ "Compaq NC7760 Gigabit Server Adapter" },
{ "Compaq NC7770 Gigabit Server Adapter" },
{ "Compaq NC7780 Gigabit Server Adapter" },
{ 0 },
};
/* PCI Devices which use the 570x chipset */
struct pci_device_table {
unsigned short vendor_id, device_id; /* Vendor/DeviceID */
unsigned short subvendor, subdevice; /* Subsystem ID's or PCI_ANY_ID */
unsigned int class, class_mask; /* (class,subclass,prog-if) triplet */
unsigned long board_id; /* Data private to the driver */
int io_size, min_latency;
} bcm570xDevices[] = {
{0x14e4, 0x1644, 0x1014, 0x0277, 0, 0, BCM5700VIGIL ,128,32},
{0x14e4, 0x1644, 0x14e4, 0x1644, 0, 0, BCM5700A6 ,128,32},
{0x14e4, 0x1644, 0x14e4, 0x2, 0, 0, BCM5700T6 ,128,32},
{0x14e4, 0x1644, 0x14e4, 0x3, 0, 0, BCM5700A9 ,128,32},
{0x14e4, 0x1644, 0x14e4, 0x4, 0, 0, BCM5700T9 ,128,32},
{0x14e4, 0x1644, 0x1028, 0xd1, 0, 0, BCM5700 ,128,32},
{0x14e4, 0x1644, 0x1028, 0x0106, 0, 0, BCM5700 ,128,32},
{0x14e4, 0x1644, 0x1028, 0x0109, 0, 0, BCM5700 ,128,32},
{0x14e4, 0x1644, 0x1028, 0x010a, 0, 0, BCM5700 ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1000, 0, 0, TC996T ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1001, 0, 0, TC996ST ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1002, 0, 0, TC996SSX ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1003, 0, 0, TC997T ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1005, 0, 0, TC997SX ,128,32},
{0x14e4, 0x1644, 0x10b7, 0x1008, 0, 0, TC942BR01 ,128,32},
{0x14e4, 0x1644, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5700 ,128,32},
{0x14e4, 0x1645, 0x14e4, 1, 0, 0, BCM5701A5 ,128,32},
{0x14e4, 0x1645, 0x14e4, 5, 0, 0, BCM5701T1 ,128,32},
{0x14e4, 0x1645, 0x14e4, 6, 0, 0, BCM5701T8 ,128,32},
{0x14e4, 0x1645, 0x14e4, 7, 0, 0, BCM5701A7 ,128,32},
{0x14e4, 0x1645, 0x14e4, 8, 0, 0, BCM5701A10 ,128,32},
{0x14e4, 0x1645, 0x14e4, 0x8008, 0, 0, BCM5701A12 ,128,32},
{0x14e4, 0x1645, 0x0e11, 0xc1, 0, 0, NC6770 ,128,32},
{0x14e4, 0x1645, 0x0e11, 0x7c, 0, 0, NC7770 ,128,32},
{0x14e4, 0x1645, 0x0e11, 0x85, 0, 0, NC7780 ,128,32},
{0x14e4, 0x1645, 0x1028, 0x0121, 0, 0, BCM5701 ,128,32},
{0x14e4, 0x1645, 0x10b7, 0x1004, 0, 0, TC996SX ,128,32},
{0x14e4, 0x1645, 0x10b7, 0x1006, 0, 0, TC996BT ,128,32},
{0x14e4, 0x1645, 0x10b7, 0x1007, 0, 0, TC1000T ,128,32},
{0x14e4, 0x1645, 0x10b7, 0x1008, 0, 0, TC940BR01 ,128,32},
{0x14e4, 0x1645, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5701 ,128,32},
{0x14e4, 0x1646, 0x14e4, 0x8009, 0, 0, BCM5702 ,128,32},
{0x14e4, 0x1646, 0x0e11, 0xbb, 0, 0, NC7760 ,128,32},
{0x14e4, 0x1646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5702 ,128,32},
{0x14e4, 0x16a6, 0x14e4, 0x8009, 0, 0, BCM5702 ,128,32},
{0x14e4, 0x16a6, 0x0e11, 0xbb, 0, 0, NC7760 ,128,32},
{0x14e4, 0x16a6, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5702 ,128,32},
{0x14e4, 0x1647, 0x14e4, 0x0009, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x1647, 0x14e4, 0x000a, 0, 0, BCM5703A31 ,128,32},
{0x14e4, 0x1647, 0x14e4, 0x000b, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x1647, 0x14e4, 0x800a, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x1647, 0x0e11, 0x9a, 0, 0, NC7770 ,128,32},
{0x14e4, 0x1647, 0x0e11, 0x99, 0, 0, NC7780 ,128,32},
{0x14e4, 0x1647, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x16a7, 0x14e4, 0x0009, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x16a7, 0x14e4, 0x000a, 0, 0, BCM5703A31 ,128,32},
{0x14e4, 0x16a7, 0x14e4, 0x000b, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x16a7, 0x14e4, 0x800a, 0, 0, BCM5703 ,128,32},
{0x14e4, 0x16a7, 0x0e11, 0x9a, 0, 0, NC7770 ,128,32},
{0x14e4, 0x16a7, 0x0e11, 0x99, 0, 0, NC7780 ,128,32},
{0x14e4, 0x16a7, PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5703 ,128,32}
};
#define n570xDevices (sizeof(bcm570xDevices)/sizeof(bcm570xDevices[0]))
/*
* Allocate a packet buffer from the bcm570x packet pool.
*/
void *
bcm570xPktAlloc(int u, int pksize)
{
return malloc(pksize);
}
/*
* Free a packet previously allocated from the bcm570x packet
* buffer pool.
*/
void
bcm570xPktFree(int u, void *p)
{
free(p);
}
int
bcm570xReplenishRxBuffers(PUM_DEVICE_BLOCK pUmDevice)
{
PLM_PACKET pPacket;
PUM_PACKET pUmPacket;
void *skb;
int queue_rx = 0;
int ret = 0;
while ((pUmPacket = (PUM_PACKET)
QQ_PopHead(&pUmDevice->rx_out_of_buf_q.Container)) != 0) {
pPacket = (PLM_PACKET) pUmPacket;
/* reuse an old skb */
if (pUmPacket->skbuff) {
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
queue_rx = 1;
continue;
}
if ( ( skb = bcm570xPktAlloc(pUmDevice->index,
pPacket->u.Rx.RxBufferSize + 2)) == 0) {
QQ_PushHead(&pUmDevice->rx_out_of_buf_q.Container,pPacket);
printf("NOTICE: Out of RX memory.\n");
ret = 1;
break;
}
pUmPacket->skbuff = skb;
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
queue_rx = 1;
}
if (queue_rx) {
LM_QueueRxPackets(pDevice);
}
return ret;
}
/*
* Probe, Map, and Init 570x device.
*/
int eth_init(bd_t *bis)
{
int i, rv, devFound = FALSE;
pci_dev_t devbusfn;
unsigned short status;
/* Find PCI device, if it exists, configure ... */
for( i = 0; i < n570xDevices; i++){
devbusfn = pci_find_device(bcm570xDevices[i].vendor_id,
bcm570xDevices[i].device_id, 0);
if(devbusfn == -1) {
continue; /* No device of that vendor/device ID */
} else {
/* Set ILINE */
pci_write_config_byte(devbusfn,
PCI_INTERRUPT_LINE, BCM570X_ILINE);
/*
* 0x10 - 0x14 define one 64-bit MBAR.
* 0x14 is the higher-order address bits of the BAR.
*/
pci_write_config_dword(devbusfn,
PCI_BASE_ADDRESS_1, 0);
ioBase = BCM570X_MBAR;
pci_write_config_dword(devbusfn,
PCI_BASE_ADDRESS_0, ioBase);
/*
* Enable PCI memory, IO, and Master -- don't
* reset any status bits in doing so.
*/
pci_read_config_word(devbusfn,
PCI_COMMAND, &status);
status |= PCI_COMMAND_MEMORY|PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn,
PCI_COMMAND, status);
printf("\n%s: bus %d, device %d, function %d: MBAR=0x%x\n",
board_info[bcm570xDevices[i].board_id].name,
PCI_BUS(devbusfn),
PCI_DEV(devbusfn),
PCI_FUNC(devbusfn),
ioBase);
/* Allocate once, but always clear on init */
if (!pDevice) {
pDevice = malloc(sizeof(UM_DEVICE_BLOCK));
pUmDevice = (PUM_DEVICE_BLOCK)pDevice;
memset(pDevice, 0x0, sizeof(UM_DEVICE_BLOCK));
}
/* Configure pci dev structure */
pUmDevice->pdev = devbusfn;
pUmDevice->index = 0;
pUmDevice->tx_pkt = 0;
pUmDevice->rx_pkt = 0;
devFound = TRUE;
break;
}
}
if(!devFound){
printf("eth_init: FAILURE: no BCM570x Ethernet devices found.\n");
return -1;
}
/* Setup defaults for chip */
pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) {
pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
} else {
if (rx_checksum[i]) {
pDevice->TaskToOffload |=
LM_TASK_OFFLOAD_RX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_RX_UDP_CHECKSUM;
}
if (tx_checksum[i]) {
pDevice->TaskToOffload |=
LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_TX_UDP_CHECKSUM;
pDevice->NoTxPseudoHdrChksum = TRUE;
}
}
/* Set Device PCI Memory base address */
pDevice->pMappedMemBase = (PLM_UINT8) ioBase;
/* Pull down adapter info */
if ((rv = LM_GetAdapterInfo(pDevice)) != LM_STATUS_SUCCESS) {
printf("bcm570xEnd: LM_GetAdapterInfo failed: rv=%d!\n", rv );
return -2;
}
/* Lock not needed */
pUmDevice->do_global_lock = 0;
if (T3_ASIC_REV(pUmDevice->lm_dev.ChipRevId) == T3_ASIC_REV_5700) {
/* The 5700 chip works best without interleaved register */
/* accesses on certain machines. */
pUmDevice->do_global_lock = 1;
}
/* Setup timer delays */
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) {
pDevice->UseTaggedStatus = TRUE;
pUmDevice->timer_interval = CFG_HZ;
}
else {
pUmDevice->timer_interval = CFG_HZ / 50;
}
/* Grab name .... */
pUmDevice->name =
(char*)malloc(strlen(board_info[bcm570xDevices[i].board_id].name)+1);
strcpy(pUmDevice->name,board_info[bcm570xDevices[i].board_id].name);
memcpy(pDevice->NodeAddress, bis->bi_enetaddr, 6);
LM_SetMacAddress(pDevice, bis->bi_enetaddr);
/* Init queues .. */
QQ_InitQueue(&pUmDevice->rx_out_of_buf_q.Container,
MAX_RX_PACKET_DESC_COUNT);
pUmDevice->rx_last_cnt = pUmDevice->tx_last_cnt = 0;
/* delay for 4 seconds */
pUmDevice->delayed_link_ind =
(4 * CFG_HZ) / pUmDevice->timer_interval;
pUmDevice->adaptive_expiry =
CFG_HZ / pUmDevice->timer_interval;
/* Sometimes we get spurious ints. after reset when link is down. */
/* This field tells the isr to service the int. even if there is */
/* no status block update. */
pUmDevice->adapter_just_inited =
(3 * CFG_HZ) / pUmDevice->timer_interval;
/* Initialize 570x */
if (LM_InitializeAdapter(pDevice) != LM_STATUS_SUCCESS) {
printf("ERROR: Adapter initialization failed.\n");
return ERROR;
}
/* Enable chip ISR */
LM_EnableInterrupt(pDevice);
/* Clear MC table */
LM_MulticastClear(pDevice);
/* Enable Multicast */
LM_SetReceiveMask(pDevice,
pDevice->ReceiveMask | LM_ACCEPT_ALL_MULTICAST);
pUmDevice->opened = 1;
pUmDevice->tx_full = 0;
pUmDevice->tx_pkt = 0;
pUmDevice->rx_pkt = 0;
printf("eth%d: %s @0x%lx,",
pDevice->index, pUmDevice->name, (unsigned long)ioBase);
printf( "node addr ");
for (i = 0; i < 6; i++) {
printf("%2.2x", pDevice->NodeAddress[i]);
}
printf("\n");
printf("eth%d: ", pDevice->index);
printf("%s with ",
chip_rev[bcm570xDevices[i].board_id].name);
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5400_PHY_ID)
printf("Broadcom BCM5400 Copper ");
else if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
printf("Broadcom BCM5401 Copper ");
else if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5411_PHY_ID)
printf("Broadcom BCM5411 Copper ");
else if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5701_PHY_ID)
printf("Broadcom BCM5701 Integrated Copper ");
else if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5703_PHY_ID)
printf("Broadcom BCM5703 Integrated Copper ");
else if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM8002_PHY_ID)
printf("Broadcom BCM8002 SerDes ");
else if (pDevice->EnableTbi)
printf("Agilent HDMP-1636 SerDes ");
else
printf("Unknown ");
printf("transceiver found\n");
printf("eth%d: %s, MTU: %d,",
pDevice->index, pDevice->BusSpeedStr, 1500);
if ((pDevice->ChipRevId != T3_CHIP_ID_5700_B0) &&
rx_checksum[i])
printf("Rx Checksum ON\n");
else
printf("Rx Checksum OFF\n");
initialized++;
return 0;
}
/* Ethernet Interrupt service routine */
void
eth_isr(void)
{
LM_UINT32 oldtag, newtag;
int i;
pUmDevice->interrupt = 1;
if (pDevice->UseTaggedStatus) {
if ((pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) ||
pUmDevice->adapter_just_inited) {
MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 1);
oldtag = pDevice->pStatusBlkVirt->StatusTag;
for (i = 0; ; i++) {
pDevice->pStatusBlkVirt->Status &= ~STATUS_BLOCK_UPDATED;
LM_ServiceInterrupts(pDevice);
newtag = pDevice->pStatusBlkVirt->StatusTag;
if ((newtag == oldtag) || (i > 50)) {
MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, newtag << 24);
if (pDevice->UndiFix) {
REG_WR(pDevice, Grc.LocalCtrl,
pDevice->GrcLocalCtrl | 0x2);
}
break;
}
oldtag = newtag;
}
}
}
else {
while (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) {
unsigned int dummy;
pDevice->pMemView->Mailbox.Interrupt[0].Low = 1;
pDevice->pStatusBlkVirt->Status &= ~STATUS_BLOCK_UPDATED;
LM_ServiceInterrupts(pDevice);
pDevice->pMemView->Mailbox.Interrupt[0].Low = 0;
dummy = pDevice->pMemView->Mailbox.Interrupt[0].Low;
}
}
/* Allocate new RX buffers */
if (QQ_GetEntryCnt(&pUmDevice->rx_out_of_buf_q.Container)) {
bcm570xReplenishRxBuffers(pUmDevice);
}
/* Queue packets */
if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container)) {
LM_QueueRxPackets(pDevice);
}
if (pUmDevice->tx_queued) {
pUmDevice->tx_queued = 0;
}
if(pUmDevice->tx_full){
if(pDevice->LinkStatus != LM_STATUS_LINK_DOWN){
printf("NOTICE: tx was previously blocked, restarting MUX\n");
pUmDevice->tx_full = 0;
}
}
pUmDevice->interrupt = 0;
}
int
eth_send(volatile void *packet, int length)
{
int status = 0;
#if ET_DEBUG
unsigned char* ptr = (unsigned char*)packet;
#endif
PLM_PACKET pPacket;
PUM_PACKET pUmPacket;
/* Link down, return */
while(pDevice->LinkStatus == LM_STATUS_LINK_DOWN) {
#if 0
printf("eth%d: link down - check cable or link partner.\n",
pUmDevice->index);
#endif
eth_isr();
/* Wait to see link for one-half a second before sending ... */
udelay(1500000);
}
/* Clear sent flag */
pUmDevice->tx_pkt = 0;
/* Previously blocked */
if(pUmDevice->tx_full){
printf("eth%d: tx blocked.\n", pUmDevice->index);
return 0;
}
pPacket = (PLM_PACKET)
QQ_PopHead(&pDevice->TxPacketFreeQ.Container);
if (pPacket == 0) {
pUmDevice->tx_full = 1;
printf("bcm570xEndSend: TX full!\n");
return 0;
}
if (pDevice->SendBdLeft.counter == 0) {
pUmDevice->tx_full = 1;
printf("bcm570xEndSend: no more TX descriptors!\n");
QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket);
return 0;
}
if (length <= 0){
printf("eth: bad packet size: %d\n", length);
goto out;
}
/* Get packet buffers and fragment list */
pUmPacket = (PUM_PACKET) pPacket;
/* Single DMA Descriptor transmit.
* Fragments may be provided, but one DMA descriptor max is
* used to send the packet.
*/
if (MM_CoalesceTxBuffer (pDevice, pPacket) != LM_STATUS_SUCCESS) {
if (pUmPacket->skbuff == NULL){
/* Packet was discarded */
printf("TX: failed (1)\n");
status = 1;
} else{
printf("TX: failed (2)\n");
status = 2;
}
QQ_PushHead (&pDevice->TxPacketFreeQ.Container, pPacket);
return status;
}
/* Copy packet to DMA buffer */
memset(pUmPacket->skbuff, 0x0, MAX_PACKET_SIZE);
memcpy((void*)pUmPacket->skbuff, (void*)packet, length);
pPacket->PacketSize = length;
pPacket->Flags |= SND_BD_FLAG_END|SND_BD_FLAG_COAL_NOW;
pPacket->u.Tx.FragCount = 1;
/* We've already provided a frame ready for transmission */
pPacket->Flags &= ~SND_BD_FLAG_TCP_UDP_CKSUM;
if ( LM_SendPacket(pDevice, pPacket) == LM_STATUS_FAILURE){
/*
* A lower level send failure will push the packet descriptor back
* in the free queue, so just deal with the VxWorks clusters.
*/
if (pUmPacket->skbuff == NULL){
printf("TX failed (1)!\n");
/* Packet was discarded */
status = 3;
} else {
/* A resource problem ... */
printf("TX failed (2)!\n");
status = 4;
}
if (QQ_GetEntryCnt(&pDevice->TxPacketFreeQ.Container) == 0) {
printf("TX: emptyQ!\n");
pUmDevice->tx_full = 1;
}
}
while(pUmDevice->tx_pkt == 0){
/* Service TX */
eth_isr();
}
#if ET_DEBUG
printf("eth_send: 0x%x, %d bytes\n"
"[%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x] ...\n",
(int)pPacket, length,
ptr[0],ptr[1],ptr[2],ptr[3],ptr[4],ptr[5],
ptr[6],ptr[7],ptr[8],ptr[9],ptr[10],ptr[11],ptr[12],
ptr[13],ptr[14],ptr[15]);
#endif
pUmDevice->tx_pkt = 0;
QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket);
/* Done with send */
out:
return status;
}
/* Ethernet receive */
int
eth_rx(void)
{
PLM_PACKET pPacket = NULL;
PUM_PACKET pUmPacket = NULL;
void *skb;
int size=0;
while(TRUE) {
bcm570x_service_isr:
/* Pull down packet if it is there */
eth_isr();
/* Indicate RX packets called */
if(pUmDevice->rx_pkt){
/* printf("eth_rx: got a packet...\n"); */
pUmDevice->rx_pkt = 0;
} else {
/* printf("eth_rx: waiting for packet...\n"); */
goto bcm570x_service_isr;
}
pPacket = (PLM_PACKET)
QQ_PopHead(&pDevice->RxPacketReceivedQ.Container);
if (pPacket == 0){
printf("eth_rx: empty packet!\n");
goto bcm570x_service_isr;
}
pUmPacket = (PUM_PACKET) pPacket;
#if ET_DEBUG
printf("eth_rx: packet @0x%x\n",
(int)pPacket);
#endif
/* If the packet generated an error, reuse buffer */
if ((pPacket->PacketStatus != LM_STATUS_SUCCESS) ||
((size = pPacket->PacketSize) > pDevice->RxMtu)) {
/* reuse skb */
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
printf("eth_rx: error in packet dma!\n");
goto bcm570x_service_isr;
}
/* Set size and address */
skb = pUmPacket->skbuff;
size = pPacket->PacketSize;
/* Pass the packet up to the protocol
* layers.
*/
NetReceive(skb, size);
/* Free packet buffer */
bcm570xPktFree (pUmDevice->index, skb);
pUmPacket->skbuff = NULL;
/* Reuse SKB */
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
return 0; /* Got a packet, bail ... */
}
return size;
}
/* Shut down device */
void
eth_halt(void)
{
int i;
if ( initialized)
if (pDevice && pUmDevice && pUmDevice->opened){
printf("\neth%d:%s,", pUmDevice->index, pUmDevice->name);
printf("HALT,");
/* stop device */
LM_Halt(pDevice);
printf("POWER DOWN,");
LM_SetPowerState(pDevice, LM_POWER_STATE_D3);
/* Free the memory allocated by the device in tigon3 */
for (i = 0; i < pUmDevice->mem_list_num; i++) {
if (pUmDevice->mem_list[i]) {
/* sanity check */
if (pUmDevice->dma_list[i]) { /* cache-safe memory */
free(pUmDevice->mem_list[i]);
} else {
free(pUmDevice->mem_list[i]); /* normal memory */
}
}
}
pUmDevice->opened = 0;
free(pDevice);
pDevice = NULL;
pUmDevice = NULL;
initialized = 0;
printf("done - offline.\n");
}
}
/*
*
* Middle Module: Interface between the HW driver (tigon3 modules) and
* the native (SENS) driver. These routines implement the system
* interface for tigon3 on VxWorks.
*/
/* Middle module dependency - size of a packet descriptor */
int MM_Packet_Desc_Size = sizeof(UM_PACKET);
LM_STATUS
MM_ReadConfig32(PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Offset,
LM_UINT32 *pValue32)
{
UM_DEVICE_BLOCK *pUmDevice;
pUmDevice = (UM_DEVICE_BLOCK *) pDevice;
pci_read_config_dword(pUmDevice->pdev,
Offset, (u32 *) pValue32);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_WriteConfig32(PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Offset,
LM_UINT32 Value32)
{
UM_DEVICE_BLOCK *pUmDevice;
pUmDevice = (UM_DEVICE_BLOCK *) pDevice;
pci_write_config_dword(pUmDevice->pdev,
Offset, Value32);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_ReadConfig16(PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Offset,
LM_UINT16 *pValue16)
{
UM_DEVICE_BLOCK *pUmDevice;
pUmDevice = (UM_DEVICE_BLOCK *) pDevice;
pci_read_config_word(pUmDevice->pdev,
Offset, (u16*) pValue16);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_WriteConfig16(PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Offset,
LM_UINT16 Value16)
{
UM_DEVICE_BLOCK *pUmDevice;
pUmDevice = (UM_DEVICE_BLOCK *) pDevice;
pci_write_config_word(pUmDevice->pdev,
Offset, Value16);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_AllocateSharedMemory(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlockSize,
PLM_VOID *pMemoryBlockVirt,
PLM_PHYSICAL_ADDRESS pMemoryBlockPhy,
LM_BOOL Cached)
{
PLM_VOID pvirt;
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
dma_addr_t mapping;
pvirt = malloc(BlockSize);
mapping = (dma_addr_t)(pvirt);
if (!pvirt)
return LM_STATUS_FAILURE;
pUmDevice->mem_list[pUmDevice->mem_list_num] = pvirt;
pUmDevice->dma_list[pUmDevice->mem_list_num] = mapping;
pUmDevice->mem_size_list[pUmDevice->mem_list_num++] = BlockSize;
memset(pvirt, 0, BlockSize);
*pMemoryBlockVirt = (PLM_VOID) pvirt;
MM_SetAddr (pMemoryBlockPhy, (dma_addr_t) mapping);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_AllocateMemory(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlockSize,
PLM_VOID *pMemoryBlockVirt)
{
PLM_VOID pvirt;
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
pvirt = malloc(BlockSize);
if (!pvirt)
return LM_STATUS_FAILURE;
pUmDevice->mem_list[pUmDevice->mem_list_num] = pvirt;
pUmDevice->dma_list[pUmDevice->mem_list_num] = 0;
pUmDevice->mem_size_list[pUmDevice->mem_list_num++] = BlockSize;
memset(pvirt, 0, BlockSize);
*pMemoryBlockVirt = pvirt;
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_MapMemBase(PLM_DEVICE_BLOCK pDevice)
{
printf("BCM570x PCI Memory base address @0x%x\n",
(unsigned int)pDevice->pMappedMemBase);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_InitializeUmPackets(PLM_DEVICE_BLOCK pDevice)
{
int i;
void* skb;
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
PUM_PACKET pUmPacket = NULL;
PLM_PACKET pPacket = NULL;
for (i = 0; i < pDevice->RxPacketDescCnt; i++) {
pPacket = QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
pUmPacket = (PUM_PACKET) pPacket;
if (pPacket == 0) {
printf("MM_InitializeUmPackets: Bad RxPacketFreeQ\n");
}
skb = bcm570xPktAlloc(pUmDevice->index,
pPacket->u.Rx.RxBufferSize + 2);
if (skb == 0) {
pUmPacket->skbuff = 0;
QQ_PushTail(&pUmDevice->rx_out_of_buf_q.Container, pPacket);
printf("MM_InitializeUmPackets: out of buffer.\n");
continue;
}
pUmPacket->skbuff = skb;
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
}
pUmDevice->rx_low_buf_thresh = pDevice->RxPacketDescCnt / 8;
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_GetConfig(PLM_DEVICE_BLOCK pDevice)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
int index = pDevice->index;
if (auto_speed[index] == 0)
pDevice->DisableAutoNeg = TRUE;
else
pDevice->DisableAutoNeg = FALSE;
if (line_speed[index] == 0) {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_AUTO;
pDevice->DisableAutoNeg = FALSE;
}
else {
if (line_speed[index] == 1000) {
if (pDevice->EnableTbi) {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX;
}
else if (full_duplex[index]) {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX;
}
else {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS;
}
if (!pDevice->EnableTbi)
pDevice->DisableAutoNeg = FALSE;
}
else if (line_speed[index] == 100) {
if (full_duplex[index]) {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX;
}
else {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS;
}
}
else if (line_speed[index] == 10) {
if (full_duplex[index]) {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX;
}
else {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
}
}
else {
pDevice->RequestedMediaType =
LM_REQUESTED_MEDIA_TYPE_AUTO;
pDevice->DisableAutoNeg = FALSE;
}
}
pDevice->FlowControlCap = 0;
if (rx_flow_control[index] != 0) {
pDevice->FlowControlCap |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
if (tx_flow_control[index] != 0) {
pDevice->FlowControlCap |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
}
if ((auto_flow_control[index] != 0) &&
(pDevice->DisableAutoNeg == FALSE)) {
pDevice->FlowControlCap |= LM_FLOW_CONTROL_AUTO_PAUSE;
if ((tx_flow_control[index] == 0) &&
(rx_flow_control[index] == 0)) {
pDevice->FlowControlCap |=
LM_FLOW_CONTROL_TRANSMIT_PAUSE |
LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
}
/* Default MTU for now */
pUmDevice->mtu = 1500;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if (pUmDevice->mtu > 1500) {
pDevice->RxMtu = pUmDevice->mtu;
pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
}
else {
pDevice->RxJumboDescCnt = 0;
}
pDevice->RxJumboDescCnt = rx_jumbo_desc_cnt[index];
#else
pDevice->RxMtu = pUmDevice->mtu;
#endif
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) {
pDevice->UseTaggedStatus = TRUE;
pUmDevice->timer_interval = CFG_HZ;
}
else {
pUmDevice->timer_interval = CFG_HZ/50;
}
pDevice->TxPacketDescCnt = tx_pkt_desc_cnt[index];
pDevice->RxStdDescCnt = rx_std_desc_cnt[index];
/* Note: adaptive coalescence really isn't adaptive in this driver */
pUmDevice->rx_adaptive_coalesce = rx_adaptive_coalesce[index];
if (!pUmDevice->rx_adaptive_coalesce) {
pDevice->RxCoalescingTicks = rx_coalesce_ticks[index];
if (pDevice->RxCoalescingTicks > MAX_RX_COALESCING_TICKS)
pDevice->RxCoalescingTicks = MAX_RX_COALESCING_TICKS;
pUmDevice->rx_curr_coalesce_ticks =pDevice->RxCoalescingTicks;
pDevice->RxMaxCoalescedFrames = rx_max_coalesce_frames[index];
if (pDevice->RxMaxCoalescedFrames>MAX_RX_MAX_COALESCED_FRAMES)
pDevice->RxMaxCoalescedFrames =
MAX_RX_MAX_COALESCED_FRAMES;
pUmDevice->rx_curr_coalesce_frames =
pDevice->RxMaxCoalescedFrames;
pDevice->StatsCoalescingTicks = stats_coalesce_ticks[index];
if (pDevice->StatsCoalescingTicks>MAX_STATS_COALESCING_TICKS)
pDevice->StatsCoalescingTicks=
MAX_STATS_COALESCING_TICKS;
}
else {
pUmDevice->rx_curr_coalesce_frames =
DEFAULT_RX_MAX_COALESCED_FRAMES;
pUmDevice->rx_curr_coalesce_ticks =
DEFAULT_RX_COALESCING_TICKS;
}
pDevice->TxCoalescingTicks = tx_coalesce_ticks[index];
if (pDevice->TxCoalescingTicks > MAX_TX_COALESCING_TICKS)
pDevice->TxCoalescingTicks = MAX_TX_COALESCING_TICKS;
pDevice->TxMaxCoalescedFrames = tx_max_coalesce_frames[index];
if (pDevice->TxMaxCoalescedFrames > MAX_TX_MAX_COALESCED_FRAMES)
pDevice->TxMaxCoalescedFrames = MAX_TX_MAX_COALESCED_FRAMES;
if (enable_wol[index]) {
pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_MAGIC_PACKET;
pDevice->WakeUpMode = LM_WAKE_UP_MODE_MAGIC_PACKET;
}
pDevice->NicSendBd = TRUE;
/* Don't update status blocks during interrupt */
pDevice->RxCoalescingTicksDuringInt = 0;
pDevice->TxCoalescingTicksDuringInt = 0;
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_StartTxDma(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
printf("Start TX DMA: dev=%d packet @0x%x\n",
(int)pUmDevice->index, (unsigned int)pPacket);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_CompleteTxDma(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
printf("Complete TX DMA: dev=%d packet @0x%x\n",
(int)pUmDevice->index, (unsigned int)pPacket);
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_IndicateStatus(PLM_DEVICE_BLOCK pDevice, LM_STATUS Status)
{
char buf[128];
char lcd[4];
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
LM_FLOW_CONTROL flow_control;
pUmDevice->delayed_link_ind = 0;
memset(lcd, 0x0, 4);
if (Status == LM_STATUS_LINK_DOWN) {
sprintf(buf,"eth%d: %s: NIC Link is down\n",
pUmDevice->index,pUmDevice->name);
lcd[0] = 'L';lcd[1]='N';lcd[2]='K';lcd[3] = '?';
} else if (Status == LM_STATUS_LINK_ACTIVE) {
sprintf(buf,"eth%d:%s: ", pUmDevice->index, pUmDevice->name);
if (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS){
strcat(buf,"1000 Mbps ");
lcd[0] = '1';lcd[1]='G';lcd[2]='B';
} else if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS){
strcat(buf,"100 Mbps ");
lcd[0] = '1';lcd[1]='0';lcd[2]='0';
} else if (pDevice->LineSpeed == LM_LINE_SPEED_10MBPS){
strcat(buf,"10 Mbps ");
lcd[0] = '1';lcd[1]='0';lcd[2]=' ';
}
if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL){
strcat(buf, "full duplex");
lcd[3] = 'F';
} else {
strcat(buf, "half duplex");
lcd[3] = 'H';
}
strcat(buf, " link up");
flow_control = pDevice->FlowControl &
(LM_FLOW_CONTROL_RECEIVE_PAUSE |
LM_FLOW_CONTROL_TRANSMIT_PAUSE);
if (flow_control) {
if (flow_control & LM_FLOW_CONTROL_RECEIVE_PAUSE) {
strcat(buf,", receive ");
if (flow_control & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
strcat(buf," & transmit ");
}
else {
strcat(buf,", transmit ");
}
strcat(buf,"flow control ON");
} else {
strcat(buf, ", flow control OFF");
}
strcat(buf,"\n");
printf("%s",buf);
}
#if 0
sysLedDsply(lcd[0],lcd[1],lcd[2],lcd[3]);
#endif
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_FreeRxBuffer(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
PUM_PACKET pUmPacket;
void *skb;
pUmPacket = (PUM_PACKET) pPacket;
if ((skb = pUmPacket->skbuff))
bcm570xPktFree(pUmDevice->index, skb);
pUmPacket->skbuff = 0;
return LM_STATUS_SUCCESS;
}
unsigned long
MM_AnGetCurrentTime_us(PAN_STATE_INFO pAnInfo)
{
return get_timer(0);
}
/*
* Transform an MBUF chain into a single MBUF.
* This routine will fail if the amount of data in the
* chain overflows a transmit buffer. In that case,
* the incoming MBUF chain will be freed. This routine can
* also fail by not being able to allocate a new MBUF (including
* cluster and mbuf headers). In that case the failure is
* non-fatal. The incoming cluster chain is not freed, giving
* the caller the choice of whether to try a retransmit later.
*/
LM_STATUS
MM_CoalesceTxBuffer(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
PUM_PACKET pUmPacket = (PUM_PACKET) pPacket;
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
void *skbnew;
int len = 0;
if (len == 0)
return (LM_STATUS_SUCCESS);
if (len > MAX_PACKET_SIZE){
printf ("eth%d: xmit frame discarded, too big!, size = %d\n",
pUmDevice->index, len);
return (LM_STATUS_FAILURE);
}
skbnew = bcm570xPktAlloc(pUmDevice->index, MAX_PACKET_SIZE);
if (skbnew == NULL) {
pUmDevice->tx_full = 1;
printf ("eth%d: out of transmit buffers", pUmDevice->index);
return (LM_STATUS_FAILURE);
}
/* New packet values */
pUmPacket->skbuff = skbnew;
pUmPacket->lm_packet.u.Tx.FragCount = 1;
return (LM_STATUS_SUCCESS);
}
LM_STATUS
MM_IndicateRxPackets(PLM_DEVICE_BLOCK pDevice)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
pUmDevice->rx_pkt = 1;
return LM_STATUS_SUCCESS;
}
LM_STATUS
MM_IndicateTxPackets(PLM_DEVICE_BLOCK pDevice)
{
PUM_DEVICE_BLOCK pUmDevice = (PUM_DEVICE_BLOCK) pDevice;
PLM_PACKET pPacket;
PUM_PACKET pUmPacket;
void *skb;
while ( TRUE ) {
pPacket = (PLM_PACKET)
QQ_PopHead(&pDevice->TxPacketXmittedQ.Container);
if (pPacket == 0)
break;
pUmPacket = (PUM_PACKET) pPacket;
skb = (void*)pUmPacket->skbuff;
/*
* Free MBLK if we transmitted a fragmented packet or a
* non-fragmented packet straight from the VxWorks
* buffer pool. If packet was copied to a local transmit
* buffer, then there's no MBUF to free, just free
* the transmit buffer back to the cluster pool.
*/
if (skb)
bcm570xPktFree (pUmDevice->index, skb);
pUmPacket->skbuff = 0;
QQ_PushTail(&pDevice->TxPacketFreeQ.Container, pPacket);
pUmDevice->tx_pkt = 1;
}
if (pUmDevice->tx_full) {
if (QQ_GetEntryCnt(&pDevice->TxPacketFreeQ.Container) >=
(QQ_GetSize(&pDevice->TxPacketFreeQ.Container) >> 1))
pUmDevice->tx_full = 0;
}
return LM_STATUS_SUCCESS;
}
/*
* Scan an MBUF chain until we reach fragment number "frag"
* Return its length and physical address.
*/
void MM_MapTxDma
(
PLM_DEVICE_BLOCK pDevice,
struct _LM_PACKET *pPacket,
T3_64BIT_HOST_ADDR *paddr,
LM_UINT32 *len,
int frag)
{
PUM_PACKET pUmPacket = (PUM_PACKET) pPacket;
*len = pPacket->PacketSize;
MM_SetT3Addr(paddr, (dma_addr_t) pUmPacket->skbuff);
}
/*
* Convert an mbuf address, a CPU local virtual address,
* to a physical address as seen from a PCI device. Store the
* result at paddr.
*/
void MM_MapRxDma(
PLM_DEVICE_BLOCK pDevice,
struct _LM_PACKET *pPacket,
T3_64BIT_HOST_ADDR *paddr)
{
PUM_PACKET pUmPacket = (PUM_PACKET) pPacket;
MM_SetT3Addr(paddr, (dma_addr_t) pUmPacket->skbuff);
}
void
MM_SetAddr (LM_PHYSICAL_ADDRESS *paddr, dma_addr_t addr)
{
#if (BITS_PER_LONG == 64)
paddr->High = ((unsigned long) addr) >> 32;
paddr->Low = ((unsigned long) addr) & 0xffffffff;
#else
paddr->High = 0;
paddr->Low = (unsigned long) addr;
#endif
}
void
MM_SetT3Addr(T3_64BIT_HOST_ADDR *paddr, dma_addr_t addr)
{
unsigned long baddr = (unsigned long) addr;
#if (BITS_PER_LONG == 64)
set_64bit_addr(paddr, baddr & 0xffffffff, baddr >> 32);
#else
set_64bit_addr(paddr, baddr, 0);
#endif
}
/*
* This combination of `inline' and `extern' has almost the effect of a
* macro. The way to use it is to put a function definition in a header
* file with these keywords, and put another copy of the definition
* (lacking `inline' and `extern') in a library file. The definition in
* the header file will cause most calls to the function to be inlined.
* If any uses of the function remain, they will refer to the single copy
* in the library.
*/
void
atomic_set(atomic_t* entry, int val)
{
entry->counter = val;
}
int
atomic_read(atomic_t* entry)
{
return entry->counter;
}
void
atomic_inc(atomic_t* entry)
{
if(entry)
entry->counter++;
}
void
atomic_dec(atomic_t* entry)
{
if(entry)
entry->counter--;
}
void
atomic_sub(int a, atomic_t* entry)
{
if(entry)
entry->counter -= a;
}
void
atomic_add(int a, atomic_t* entry)
{
if(entry)
entry->counter += a;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
void
QQ_InitQueue(
PQQ_CONTAINER pQueue,
unsigned int QueueSize) {
pQueue->Head = 0;
pQueue->Tail = 0;
pQueue->Size = QueueSize+1;
atomic_set(&pQueue->EntryCnt, 0);
} /* QQ_InitQueue */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
char
QQ_Full(
PQQ_CONTAINER pQueue) {
unsigned int NewHead;
NewHead = (pQueue->Head + 1) % pQueue->Size;
return(NewHead == pQueue->Tail);
} /* QQ_Full */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
char
QQ_Empty(
PQQ_CONTAINER pQueue) {
return(pQueue->Head == pQueue->Tail);
} /* QQ_Empty */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
unsigned int
QQ_GetSize(
PQQ_CONTAINER pQueue) {
return pQueue->Size;
} /* QQ_GetSize */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
unsigned int
QQ_GetEntryCnt(
PQQ_CONTAINER pQueue) {
return atomic_read(&pQueue->EntryCnt);
} /* QQ_GetEntryCnt */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* TRUE entry was added successfully. */
/* FALSE queue is full. */
/******************************************************************************/
char
QQ_PushHead(
PQQ_CONTAINER pQueue,
PQQ_ENTRY pEntry) {
unsigned int Head;
Head = (pQueue->Head + 1) % pQueue->Size;
#if !defined(QQ_NO_OVERFLOW_CHECK)
if(Head == pQueue->Tail) {
return 0;
} /* if */
#endif /* QQ_NO_OVERFLOW_CHECK */
pQueue->Array[pQueue->Head] = pEntry;
wmb();
pQueue->Head = Head;
atomic_inc(&pQueue->EntryCnt);
return -1;
} /* QQ_PushHead */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* TRUE entry was added successfully. */
/* FALSE queue is full. */
/******************************************************************************/
char
QQ_PushTail(
PQQ_CONTAINER pQueue,
PQQ_ENTRY pEntry) {
unsigned int Tail;
Tail = pQueue->Tail;
if(Tail == 0) {
Tail = pQueue->Size;
} /* if */
Tail--;
#if !defined(QQ_NO_OVERFLOW_CHECK)
if(Tail == pQueue->Head) {
return 0;
} /* if */
#endif /* QQ_NO_OVERFLOW_CHECK */
pQueue->Array[Tail] = pEntry;
wmb();
pQueue->Tail = Tail;
atomic_inc(&pQueue->EntryCnt);
return -1;
} /* QQ_PushTail */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
PQQ_ENTRY
QQ_PopHead(
PQQ_CONTAINER pQueue) {
unsigned int Head;
PQQ_ENTRY Entry;
Head = pQueue->Head;
#if !defined(QQ_NO_UNDERFLOW_CHECK)
if(Head == pQueue->Tail) {
return (PQQ_ENTRY) 0;
} /* if */
#endif /* QQ_NO_UNDERFLOW_CHECK */
if(Head == 0) {
Head = pQueue->Size;
} /* if */
Head--;
Entry = pQueue->Array[Head];
membar();
pQueue->Head = Head;
atomic_dec(&pQueue->EntryCnt);
return Entry;
} /* QQ_PopHead */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
PQQ_ENTRY
QQ_PopTail(
PQQ_CONTAINER pQueue) {
unsigned int Tail;
PQQ_ENTRY Entry;
Tail = pQueue->Tail;
#if !defined(QQ_NO_UNDERFLOW_CHECK)
if(Tail == pQueue->Head) {
return (PQQ_ENTRY) 0;
} /* if */
#endif /* QQ_NO_UNDERFLOW_CHECK */
Entry = pQueue->Array[Tail];
membar();
pQueue->Tail = (Tail + 1) % pQueue->Size;
atomic_dec(&pQueue->EntryCnt);
return Entry;
} /* QQ_PopTail */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
PQQ_ENTRY
QQ_GetHead(
PQQ_CONTAINER pQueue,
unsigned int Idx)
{
if(Idx >= atomic_read(&pQueue->EntryCnt))
{
return (PQQ_ENTRY) 0;
}
if(pQueue->Head > Idx)
{
Idx = pQueue->Head - Idx;
}
else
{
Idx = pQueue->Size - (Idx - pQueue->Head);
}
Idx--;
return pQueue->Array[Idx];
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
PQQ_ENTRY
QQ_GetTail(
PQQ_CONTAINER pQueue,
unsigned int Idx)
{
if(Idx >= atomic_read(&pQueue->EntryCnt))
{
return (PQQ_ENTRY) 0;
}
Idx += pQueue->Tail;
if(Idx >= pQueue->Size)
{
Idx = Idx - pQueue->Size;
}
return pQueue->Array[Idx];
}
#endif /* CFG_CMD_NET, !CONFIG_NET_MULTI, CONFIG_BCM570x */